
R-A1S5 664 INFORMATION INTERFACE RELATED SOURCES SEE-INFO-N3-Nif 1/1
(SOFTWARE ENGINEE..(U) INSTITUTE FOR DEFENSE ANALYSES
NEAORIA VA R P MORTON ET AL. APR 85 IDA-P-i821

UNCLASSIFIED ID/HG-85-29655 DA93-4-C-3 F 12 NL

mmhhmhhhmhl
mhmmhmhhhhhhul
smmhEmhhmhhEEE
Ehmhhhhhhhhhhl
IEEE"."'omm

III11

-960

- IjIE~

MICROCOPY RESOLUTION TEST CHART i

J1L...,.ATf4Aj BUREAU OF STANOARDS-I%3-A--

C.l_

,*,S -- , S-- S S S 5 ,.46 5 . % 0 .

L6~

% . -=*.8

UNCLASSIFIED u 14 sf 41 copies

AD-A185 664

IDA PAPER P-1821

INFORMATION INTERFACE RELATED SOURCES V

SEE-INFO-003-001.0

DTIC
Richard P. Morton DLET

Jack C. Wileden OCT 0 1987

April 1985

Prepared for

Office of the Under Secretary of Defense for Research and Engineering

D 1 -t! SMTryENT A
Approved for public releasel

Distribution Unlinited

INSTITUTE FOR DEFENSE ANALYSES
1801 N. Beauregard Street, Alexandria, VA 22311

UNCLASSIFIED ,O1 Log No. HO 85-2H55

SECuRrrY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la REPORT SECURITY cLASSIFICATION lb. RESTRICTIVE MARKINGS

Unclassified None
2a SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVAILABILITY OF REPORT

2b DECLASSIFICATION/DOWNGRADING SCHEDULE Public releaseiunlimited distribution.

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

P-1821

6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION
Institute for Defense Analyses IDA

6c ADDRESS (City, State, and Zip Code) 7b ADDRESS (City, State, end Zip Code)

1801 N. Beauregard St.
Alexandria, VA 22311

a NAME OF FUNDINGISPONSORING 8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)

STARS J Program Office MDA 903 84 C 0031

8c ADDRESS (City, State, and Zip Code) I6. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT1211 Fern SL., C-107 ELEMENT NO. NO. NO. ACCESSION NO. ;
Arlington, VA 22202 T-D54291

11 TITLE (Include Security Clnasiflcatioe)
Information Interface Related Sources SEE-INFO-003-001.0 (U) __

12 PERSONAL AUTHOR(S)
Richard P. Morton Jack C. Wileden __

3 TYPE OF REPORT Mib TIME COVERED 14 DATE OF REPORT (Year, Month, Day) S PAGE COUNT
Final IFROM _ TO 1985 April 84

16 SUPPLEMENTARY NOTATION

17 COSATI CODES LS SUBJECT TERMS (Continue on revrme it necessary and identify by block number)

FIELD GROp _asjUUM Information Interfaces; Software Engineering Environment; Software Tools.

19 ABSTRACT (Continue on reverse if ncmary and identify by block number)

This document is a compendium of the states of the art and practice related to information interfaces in environments and non-Dol)
related software work products. It characteris information interfaces in software engineering environments (SEEs), describes
the information interfaces in a select sample of environments and tools, surveys existing information interface technology, and
points the way to additional litertue from which a more complete reatment of information interfaces and information interface
technology may be obtained.

Appendix I contains a paper, The TRW Software Productivity System, by Ann B. Marmor-Squires, and Appendix 2, Some
Thoughts on a Taxonomy for Software Engineering Objects by Leon G. Stucki.

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

U UNCLASSIFIED/UNLIMITED C3 SAME AS RPT. C3 DTIC USERS Unclassified

II22e NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Incluade Aren Code 1 22 OFFICE SYMBOL

DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF TillS PAGE

All other editions are obsolete

UNCLASSIFIED

IDA PAPER P-1821

INFORMATION INTERFACE RELATED SOURCES
SEE-INFO-003-001.0

Richard P. Morton
Jack C. Wileden

April 1985 Accesion For

NTIS CIA&I I
DIC TAB

J: ,.'tific t~un

B3y

Copy. D~t~
1t4SPECl.

IDA

INSTITUTE FOR DEFENSE ANALYSES

Contract No. MDA 903 84 C 0031
Task T-DS-,429

UNCLASSIFIED

% k %%y-IV

Preface

This is a compendium of the state of the art and practice
related to information interfaces in environments and non-DoD
related software work products. It characterizes information
interfaces in software engineering environments, describes the
information interfaces in a select sample of environments and
tools, surveys existing information interface technology, and
points the way to additional literature from which a more complete
treatment of information interfaces and information interface
technology may be obtained.

This compendium was developed with the perspective of trying
to be as helpful as possible to the people who have to perform the
follow-up tasks. As a result, breadth was given priority over
depth in the literature search. The intention was to try to
identify as many areas of interest as possible, even though
resources permitted only a superficial analysis of each area. The
requisite in-depth analysis is one of the recommended follow-up
tasks.

The compendium is divided into sections reflecting
development activities (sections 2-6), management and support
activities (sections 7-12), technologies (sections 13-17), and
application areas (section 18). In general, a brief overview
begins each section. A list of references pertaining to the
section topic concludes each section. Some of the sections also
contain a more detailed review of one or more tools or
environments relevant to the section topic. These reviews are
intended to provide examples of notable information interfaces
and/or information interface technology related to the topic of
the section. Conclusions and recommendations conclude the
compendium.

IL

Acknowledgement

The authors would like to gratefully acknowledge the
contributions of many reviewers, including the JSSEE team, Gill.
Berglass, Ann Marmor-Squires, Leon Stucki and especially Sam
Redwine. Sarah Nash contributed significantly in' several ways,
particularly in performing the electronic literature searches;
Cynthia Hillman helped with the editing and production details;
Joyce Walker and several other IDA secretaries assisted with
typing the references and drawing the figure. Their efforts are
also greatly appreciated.

.5

al

N

l

Table of Oontents

Preac... iiiII
1knowledements...... iv

1.1 Bakgrund 1
1.2 Overview and Scope 2
1.3 Repoct Organization 6
1.4 General References 6

2.0 Requirements and Specifications 9
2.1 Tio Views of Requirements 9
2.2 Tools Review 10

2.2.1 10

2.3 Literature. 11

3.0 Prellminary and Detailed Design 13
3.1 Tools Review o 13

3 .1.3 PIC/Aa o................. 14

4.0 code, it Test and Debug 21
4.1 Tools Review 21

4.6D l iece, and 21
4.1.2 Tolpck 23
4.1.3 24 24
4.1.4 Dianam~ an 25
4.1.5 EM, Hig-me. Deb,. n, Tbolset 27

4.2 Literature 28
9 ~ 5.0 Integrtin and Syte an Aceti Test 30J

6.0 Delyet, maintenance, an Su mt6 31
6.1 Tools Review 31

6.1.1 OW Change Tracking System... 316.2 Literature o........................... 32

7.0 Project management o.......................... 33
7.1 Tools Review o....o........................... 33

7.1.1 Enhanced Project Evaluation Schedule

7.2 Literature .. 33

vii

8.0 Configuration Managemnt and Version Control 358.1 To..... *@.................. 35
8.1.1 QTD-5 U X Software Managemnt

sutprt Stem 35
8.2 terature

9.0 Vieiictton and Validation 37

10.0 Qu ixty Assurance 39

1 . s4stem (e viralPn) nagMe.t 41

12.0 Training 41

13.0.ff6e Autation and tid Processing 42

14.0 "mrorking and Distributed Processing• 43

15.0 Grapcs .. 43

16.0 Future Paradigmt 4416.1 Artificial intelligence and Logic Programilng 4
16.2 Application Generators0000*0.... 46

16.3 Fuctioal Proraming** 46
16.4 Relational Programing0000. 46

16.5 Rapid Prot otyin5 4616.6 Data Flow Caiputing 47

17.0 Programing Lwjae and Syntax -
Dirced Pro sing 47

18.0 Applications*. 48-
18.1 Databse MWS waemt S t 49
18.2 Avionics or. 50
18.3 Decision t system 50

. ooo ooooe oooo oeooo oooo

18.4 Real-Tim System 50 i
18.5 BL Engiering0 51
18.6 eurt......................52

1.9.0 Velationships o......... 52

20.0 Conclusionso o..................................... 53

21.o0 lecommerdations 55 -

*

Appendix 1 - The TRW Software Productivity System 57

Appendix 2 - Sam Thoughts on a Taota for
software Engineering Objects 65

viii

Information Interfaces

1.0 Introduction

1.1 Background

* The Software Technology for Adaptable Reliable Systems Joint
Program Off ice (STARS JPO) vas established by the Deputy Under
Seoretary of Defense for Research and Engineering CDUSDRR) for
Research and Advanced Technology CRNAT) to plan and implement a
program to improve the state of practice of software technology
throughout the DoD. This program has as one of its central

* efforts the development of a Joint Service Software Engineering
Environment (JSSEE).

A goal of the JSSEE development is to establish an
architecture which will accommodate the incorporation of new
software technology in an evolutionary manner. This goal imposes

C stringent requirements on the software architecture. More
importantly here, a goal to permit migration of project data to
other environments raises the issue of information interfaces to
primary importance.

As defined in the IEEE Standard Glossary of Software
* Engineering Terminology, an interface is a shared boundary. An

information interface is an inter-environment, inter-tool or
user-tool interface that consists of data (as opposed to
invocation or control interfaces). These boundaries are specified
using an information interface specification. The data that
passes across such a boundary is expected to conform to the

* specification for the interface. (A glossary of terms related to
information interfaces is under development. The definitions used
here conform to an early draft of that glossary.]

The purpose of this task is to provide the STARS JSSEE effort
with a technical compendium of the state of the art and practice
related to information interfaces in environments and non-DoD
related software work products. The ultimate purpose for studying
information interfaces is to be able to design the JSSEE in a way
that makes it useful in a wide variety of project environments,
using a variety of methods, techniques, tools, notations, and user
interfaces, including many not yet developed. To do this it is
important to understand the information interfaces that exist in a
generic sense in software development and support, how they are
used by the different methods and tools, and how they are
represented in the different formats and notations. It is also
important to understand information interface technology, that is,
techniques for specifying information interfaces and methods for
using, organizing, controlling and assessing them.

The purpose of this report is to characterize the concept of
information interfaces in software engineering environments
(833s), to describe the information interfaces present in a select
sample of environments and tools, and to point the way to
additional literature from which a more complete treatment of
information interfaces and information interface technology may be
obtained.

1.2 Overview and Scope

While the concept of a JSSRR encompasses the total working
environment of a software engineer, with respect to information
interfaces we limit our concern to that part of the environment
that is potentially automated. Such an automated environment
(referred to in the remainder of this report as an environment)
consists of a collection of tools that operate on information
fragments.

Within this environment the information interface
specifications specify information fragments manipulated by the
tools. There are several ways of categorizing these information
fragments. Some information fragments are ezternal and some are
internal. External information fragments are user-environment
information fragments or environment-environment information
fragments. User-environement information fragments are ones that
need to be intelligible to people as well as tools.
Documentation, analysis results, source code and review reports
are examples of external information fragments. Internal
information fragments are ones that are produced by one tool for
the consumption of other tools. A parse tree would normally fall
into this category.

Some information fragments are root fragments and some are
non-root fragments. Root fragments are fragments that conform to
complete information interface specifications, such as a
specification or symbol table. Non-root fragments are meaningful
parts of those complete fragments. Some examples of non-root
fragments are functions, attributes and priorities of a
specification, and symbols, types and other attributes of a symbol
table. Some non-root fragments are relationships between other
non-root or root fragments, such as the traceability relationships
between a requirements document and a design document, or the
nesting structure of a symbol table.

The specifications of (root, non-root) information fragments
are (root, non-root) information interface specification
fragments. That is, an important aspect of the notion of a
fragment is its relationship to an information interface.
Fragments are not arbitrary pieces of specifications or data.

The above definitions characterize information interfaces in
a few ways that are used in the remainder of this paper . There
are other ways of characterizing information interfaces. Consider
the diagram in Figure 1. The vertical arrows represent invocation

Figure 1. One structure for information interfaces

Environment I Interchange Environment

Tool Rel., Ent., Attr. Tool

Data Model

I

0 DBMS DtMoe ,DBMS -

File System File File Svstem

E%

V.
.5_

and control interfaces (vhich may also be partially information
interfaces), and the horizontal arrows represent information
interfaces between like components. From this it can be seen that
specifications of interfaces need to'define files (the physical
models of data storage), logical data models used in data base
management systems, the specific relations, entity types and
attributes of the data used by specific tools (semantic data
models), and interchange formats used for delivering the output of
one environment to another. This hierarchy, while somewhat
similar to the hierarchy of fragments described above, takes the
perspective of a data base designer or administrator.

The developers of the JSSEE may need to take another
perspective, one closer to the data itself. In this case the
types of data fragments can be categorized in several different
ways. One such way is in terms of the nature of the processing to
be done on them. Here, there would be sequential items (perhaps
called files), structured storage items (perhaps relations),
graphical items, screens, binary data, etc. Another way to
characterize the data fragments is in terms of the way they are
used, for example, as documentation text files, source code text
files, load modules, forms, input edit templates, help messages,
test data, measurement information, accounting information, etc.
A specific example of how this might be done is shown in Appendix
2.

Since the intent of the JSSEE is to automate as much of the
software engineering process as is practical within the state of
the art, we have had to consider information interfaces from all
aspects of software development, maintenance and management. We
categorize these aspects as follows:

Phases (requirements, design, coding, etc.)

Management and support activities (project management,
configuration management, training, etc.) '

* Technologies (artificial intelligence, graphics, etc.)

* Applications (real-time, command and control, etc.)

Phases and management and support activities have
traditionally been the subject of software engineering research.
While there is much dispute over what phases and management and
support activities software projects should employ, and indeed.
over whether the traditional model of phases is even appropriate.
for this task we have been instructed to structure this report in
concert with the draft DOD-STD-2167, Defense System Software
Development.

Technologies and applications are frequently (but not always)
ignored in discussions of environments. Technologies, such as
graphics, are extremely general topics whose scopes exceed their
applicability to software engineering environments. Our interest,

therefore, is limited to what they contribute to software
engineering and to the design of environments. This can be viewed
as what implications the architectural choices for the design of
the JSSZE have for information interfaces. For example, if JSSEE
workstations are graphics oriented, then graphics related
information interfaces need to be part of the JSSEE. If the JSSEE
is implemented as a distributed system, then networking interfaces
are relevant.

In addition to the technologies we discuss below, there are
several others that could also be listed or covered more
extensively but are not because there are other JSSEE related
reports due that cover these areas. These include human
engineering, multilevel security, standards and database
management.

In general, we have limited our search for application
specific information interfaces to those we believe to be highly
likely applications to be developed with a JSSEE. These include
real-time applications and some of the problems dealt with in
command and control and decision support systems. Many of the
subjects listed as technologies to be used in building the JSSEE
are also technologies to be used in the MCCR products to be built
with the JSSEE, and, therefore, are application related issues.
The topics of human engineering, security and database management
are mentioned briefly in this context.

To date, there is little literature that discusses
information interfaces per se. To learn about information
interfaces one frequently needs to read between the lines in
descriptions of languages, tools or methods in order to identify
the classes of objects the author is describing. For example, in
reviewing a description of a formal specification notation, one
might notice that the notation represents objects such as
functions, relations, sets, variables, operations on sets and
operations on functions. These classes of objects are the kinds
of information that a user of that notation needs to deal with,
and the kinds of information that might become part of an
information interface specification between, say, a specifications
editor and a specifications analyzer.

Because of the need to cover a wide area in a relatively
brief time, the search for information about information
interfaces has been limited to sources that were easily
available. Undoubtedly, the reader will find one or more of his
favorite tools or references missing from this list. Suggestions
will be appreciated since the work of defining the information
interfaces of the JSSEE is still to come.

The literature search consisted of reviews of a limited set
of recent journals plus an on-line search of several technical
databases using numerous keyword combinations. The on-line search
yielded over 300 interesting sounding titles, so abstracts for
these were also reviewed. This still netted over 100 documents of

interest, far too many to actually read in the available time.
Consequently, many of the citations listed here cannot be
interpreted as recommended reading, only likely places to look for
useful information. Over 50 documents were actually read or
scanned. These gave us many insights into what information
interfaces exist in various systems, as well as insights into how
to look for information interfaces. The citations taken from
abstracts, therefore, reflect our best judgement regarding where
promising sources can be found.

What we learned about looking for information interfaces is
that the easiest places to find them in the literature are in

4descriptions of methods and languages. In most cases descriptions
of methods are concerned with identifying the objects that someone
carrying out the method will need to assemble and produce.
Similarly, language descriptions identify classes of objects
within the language (statements, expressions, etc.), as well as
objects manipulated by the language (files, variables, etc.).

Most of the subject headings we have chosen for this report
are not sufficiently well standardized in their usage to be
clearly bounded. Therefore, the reader will find numerous cross
references within the text below. It is hoped that these will
both prompt the reader to look in adjoining subjects for relevant
information, and remind him that significant overlap can be found
along the boundaries between phases, particularly because of the
multiple viewpoints that apply to such situations; the output from
one activity is the input to the next.

1.3 Report Organization

Most of the remainder of this report is divided into sections
reflecting phases (sections 2-6), management and support
activities (sections 7-12), technologies (sections 13-17), and
application areas (section 18). In general, each of these
sections begins with a brief overview and concludes with a list of
references related to the topic of that section. Some of the
sections also contain a more detailed review of one or more tools
or environments relevant to that topic. These more detailed
reviews are primarily intended to provide examples of notable
information interfaces and/or information interface technology
pertaining to the topic of the section. Conclusions and
recommendations complete the report.

1.4 General References

The references in this section cover more general subjects
than each of the remaining sections of this report. The following
document describes the intent of the JSSEE from a user's
perspective.

Operational Concept Document (Draft), STARS Joint Program
Office, JSSEE-OCD-000.2, November 15. 1984.

The following references relate to the structure of a
software engineering environment database. They give some
perspective on relationships that might not be found elsewhere.

Santoni, Patricia A., The Project Development Data Base: The
Core of an Automated Software Engineering Environment, Naval
Ocean Systems Center, Technical Note 932, 24 October 1980.

Wassermann, Anthony I.; Prenner, Charles J., "Toward a
unified view of data base management, programming languages
and operating systems - a tutorial", Information Systems,
Vol. 4, No. 2, 1979, pp. 119-126, Pergamon Press, Ltd.

The following reference discusses information interfaces from
a market perspective.

Redwine, Samuel T., Jr., "The Future Government and Industry
Software Tools Marketplace", Proc. Washington Ada Symposium,
March 25-27, 1984, Washington D.C. Chapter Ada Technical
Committee and Johns Hopkins University.

Probably the most common form of information interface
technology (that is, technology used specifically for defining
information interface specifications) are data
dictionary/directory systems. Most data dictionary references are
product specific vendor literature; other discussions of the use
of data dictionaries can be found in some of the database
management texts. The following are additional references.

Lefkovits, Henry C., Sibley, Edgar H., Lefkovits, Sandra L.,
Information Resource - Data Dictionary Systems, QED
Information Sciences, 1983.

Leong-Hong, Belkis W., Plagman, Bernard K., Data Dictionary
Directory Systems: Administration, Implementation and Usage,
Wiley Y Sons, 1982.

Marti, Robert W., "Integrated Database and Program
Descriptions using an ER-Data Dictionary", Entity
Relationship Approach to Software Engineering, North-Holland,
1983.

In addition to the specific tools and environments discussed
in the sections below, there are, of course, a very large number
of other tools and environments, many of which may become part of
the JSSEE. There are far too many to cite individually (for
example, the IITRI listing contains the names of several hundred
tools) so we give here a few references to collections of
citations for tools and environments literature. It should be
kept in mind that published articles about tools are not usually
detailed enough to provide a very complete list of the information
interfaces related to such tools and environments. The best

sources are the user manuals and system documentation about the
tools and environments. The published literature simply provides
pointers to who is building what and can provide some
understanding of such issues as completion and comprehensiveness
of the tool and environment development.

Henderson, Peter, Editor, Proc ACM SIGSOFT/SIGPLAN Software
Engineering Symposium on Practical Software Environments,
ACM, 1984.

Houghton, Raymond C., Jr., ed., Proceedings of the
NBS/IEEE/ACM Software Tool Fair, National Bureau of
Standards. NBS Special Publication 500-80, 1981.

IIT Research Institute, Data and Analysis Center for
Software, Listing of the Software Tool Information Database,
January, 1985.

Miller, Edward, Tutorial: Automated Tools for Software
Engineering, IEEE Computer Society, 1979.

Stucki, Leon, and Houghton, Raymond C., Jr., eds.,
Proceedings: SOFTFAIR 83, the First Conference on Software
Development Tools, Techniques, and Alternatives, IEEE
Computer Society Press, 1983.

Wasserman, Anthony I., Tutorial: Software Development
Environments, IEEE Computer Society, 1981.

Current publication that containing frequent references to
tools and environments are:

ACM SIGSoft Software Engineering Notes (see especially the
Abstracts)

IEEE Computer Society Computer

IEEE Tansactions on Software Engineering

The Proceedings of the periodic International Conference on
Software Engineering

The Proceedings of the annual IEEE Computer Society Computer
Software and Applications Conference

There are five environments which have been or are currently
being developed within the DoD. These will have special
significance for the JSSEE since they are expected to become
important environments within the DoD contracting community, and
are intended to be on the migration path to the JSSEE. References
are:

"Ada Language System Specification", U. S. Army Communication
Electronics Command, November 1983.

"Distributed Computing Design System (DCDS) MethodologyCapability Demonstration", CDRL C004, TRW Report No.
38392-G950-041, October 1984.

"Facility for Automated Software Production (FASP) Handbook,
Revision 1.0", Naval Air Development Center, 24 March 1980.

"System Specification for the Ada Integrated Environment,
Intermetrics Inc., Report No. AIE(1).

"System Specification for the Ada Language System/Navy, Naval
Ocean Systems Center, 12 September 1983.

The following are general texts on the subject of software
engineering, tools and environments.

Bauer, F.L., editor, Software Engineering; an Advanced
Course, Springer-Verlag, 1977.

Blank, J., and Krijger, N.J., eds., Software Engineering
Methods and Techniques, Wiley-Interscience, 1983.

Hunke, Horst, ed., Software Engineering Environments,
Proceedings of the Symposium held in Lahnstein, Germany,
16-20 June 1983.

Jensen, R.W., and Tonies, C.C., Software Engineering,
Prentice-Hall, 1979.

Fairley, R.E., Software Engineering Concepts, McGraw-Hill,
1984.

Pressman, R.S., Software Engineering: A Practitioner's
Approach, McGraw-Hill, 1982.

S

Riddle, W.E., and Fairley, R.E., Software Development Tools,
Proceedings of a Workshop held at Pingree Park, Colorado, May
1979, Springer-Verlag, 1980.

Shooman, M.L., Software Engineering: Reliability,
Development and Management, McGraw-Hill, 1983.

2.0 Requirements and Specifications

2.1 Two views of requirements

The software industry uses two somewhat different definitions
of the terms "requirements" and "requirements analysis". Most of
the embedded systems community treats software requirements as a
refinement of systems requirements. In this context, by the time
the software analyst gets involved, many of the software
requirements have already been specified. In fact, the job of the

analyst is to insure that the stated requirements are complete and
consistent. In contrast, the information systems community
typically vievs the software requirements as initially unknown,
and it is the job of the analyst, working with the customer or
user to "discover* the requirements. The significance of this
difference in views is that different researchers have taken
different approaches in providing languages, tools or methods for
performing the requirements activities of software development.
The reader should keep these tvb views in mind when reading the
literature on requirements specification and analysis.

2.2 Tools Review

2.2.1 SRRM

The Software Requirements Engineering Methodology (SREM) is
one component of the Distributed Computing Design System (DCDS)
developed by TRW for the US Army Ballistic Missle Defense Advanced
Technology Center. SREM and DCDS are efforts to produce a unified
methodology and environment supporting all stages of the software
development process. Since one of the stated objectives of DCDS is
to employ a uniform underlying model in the tools supporting each
stage of development, the tools and information interfaces
associated with the various individual components of DCDS are all
quite similar. Since SREM is the oldest, most mature and most
representative of the DCDS tools, as well as one of the few
requirements tools in existence, we have chosen to consider only

SREM in this compendium. In particular, we do not mention the DCDS
tools supporting design or testing activities in the appropriate
sections, since they do not differ enough from SREM or from the
other tools already considered in those sections to make their
addition there essential.

The external information interface provided by SREM is RSL,
the Requirements Statement Language. RSL permits a user to
describe the components needed in a software system and the
interrelationships among those components. In essence, RSL offers
a relational database into which users may enter information about
the properties that a software system is intended to have. An
interesting and valuable feature of RSL is the fact that it is
extensible. Arbitrary new categories of components and
interrelationships among components may be added to RSL by a user.
SREM also provides consistency checking tools to help RSL users in
assessing the quality of the RSL requirements documents that they
generate.

The internal information interface provided by SREM is an
element- attribute-relation structure encoding the information
from RSL descriptions. This internal information interface Is
uniformly used throughout DCDS and is processed by all DCDS tools.
In fact, the same tools are used in various stages of development
by DCDS, with table-driven interpretation to enforce the
appropriate semantics depending upon which stage of development is
currently being supported. Thus the tables that control the

% i V

interpretation by DCDS tools are also an internal information

interface.

A reference on SREM is:

SREM User's Manual, SREM Final Report. Volume II, CDRL C005,
TRW Report No. 27332-692L-126.

2.3 Literature

It should be kept in mind that there is no agreement on the
placement of the line between requirements and design. The reader
may find that some of the work cited in Section 3 below falls
within his perspective of requirements, or conversely, that some
of the material in this section belongs in Section 3.

Additionally, much of the future paradigms work (Section 16)
is based on the notion that a formal approach to requirements
specification will eventually lead to an automated way of
producing the production system. Consequently, considerable
research in requirements can be found in the future paradigms
section.

The requirements analysis activities normally end with the
production of a requirements analysis document. Other root
information fragments frequently associated with this phase,
either as inputs or outputs, include a concept definition
document, feasibility study, system specification and acceptance
test plan. Non-root information fragments usually found in the
requirements analysis activity include functions, performance
specifications (meaning response times, data capacities, etc.) and
acceptance criteria. The documents listed below generally fall
into this pattern, but they present alternative approaches to
documenting each of these information fragments. The ones that
present formal approaches to specifications typically add the
objects commonly found in some branch of mathematics, such as
sets, elements and functions. Documents that describe specific
automated systems for capturing requirements typically add some
structuring relationships and a set of attributes to the list of
non-root fragments.

Babb, Robert G., and Mili, Ali, eds., Workshop Notes:
International Workshop on Models and Languages for Software
Specification and Design, March 30, 1984, Orlando, Cite
Universitaire, Quebec, DIUL-RR-8408.

Beichter, F., Hertzog, 0., Petzsch, SLAN-4 Reference Manual
and Design Rationale, Tech. Rep. GTR 05.272. IBM Laboratory
Boeblingen, 1982.

Borgida, Alexander, "Features of Languages for the
Development of Information Systems at the Conceptual Level",
IEEE Software, V.2, No. 1, January 1985, pp. 63-72.

DeWolf, J. B.. "Requirements Specification and Preliminary
Design for Real-Time Systems", Charles Draper Lab., Inc.,
Cambridge, MA, The IEEE Computer's Society's First
International Computer Software and Applications Conference,
8-11 Nov. 1977, Chioago, IL. Publ. IEEE.

Forsyth, D. Y.; Ward, A. 0., SAFRA: Controlled Requirements
Expression. British Aerospace Aircraft Group, Preston,
(England).

Heninger. K.L., "Specifying Software Requirements for Complex
Systems: New Techniques and Their Applioation," IEEE
Transactions on Software Engineering, Vol. SE-6, No. 1, Jan.
1980, pp. 2-13.

An Introduction to SADT Structured Analysis and Design
Technique, SofTech Inc., Document No. 9022-78R, November
1976.

Jackson, N.A., System Development, Prentioe-Hall, 1983.

Lamb, S.S.; Leck, V.G.; Peters, L.J. and Smith, G.L., "SAMM:
A Modeling Tool for Requirements and Design Speoification".
Proceedings of COMPSAC 78, IEEE Computer Society, 1978. pp.
101-08

Miyamoto, I.; Yeh, R. T., "A Software Requirements Analysis
and Definition Methodology for Business Data Processing",
Univ. of Maryland, College Park, nD, APIPS Conference
Proceedings, V. 50, 1981 National Computer Conference
571-81,4-7 May 1981, Chicago, IL

Meyer, Bertrand, "On Formalism in Speoifioations", IEEE
Software, V.2, No. 1, January 1985, pp. 6-26.

Shaw, R.C., Hudson, P.N., Davis, N.W., "Introduction of a
Formal Technique into a Software Development Environment
(Early Observations)", Software Eng. Notes, V9, No. 2, Apr.
1984. ACM SIGSOFT

Stinson, Susan K.; Wasserman, Anthony I., "Specification
Method for Interactive Medical Information Systems". Univ. of
Calif., San Francisco, Proo. Annu. Symp. Comput. Appl. Med.
Care 4th. Proo. of the Annu. Conf. of the Soo. for Adv. Med.
Syst., 12th V. 3, Washington, DC, Nov. 1-5, 1980. Publ. by
IEEE, Piscataway, NJ, 1980 p. 1471-1478.

Tausworthe, R. C., Preparation Guide for Class B Software
Specification Documents. Jet Propulsion Lab., Report No.:
NASA-CR-162431; JPL-PUB-79-56, 1 Oct 79.

Teiohroew, D. and Hershey, E.A., III: "PSL/PSA: A Computer
Aided Technique for Structured Documentation and Analysis of
Information Processing Systems." IEEE Trans. on Software

Pi

Engineering, Jan., 1977.

Zave, Pamela, "An Overview of the PAISLey Project - 1984."Software Engineering Notes, V. 9, No. 4, July, 1984, ACM

SIGSOFT.

3.0 Preliminary and Detailed Design

Even though DOD-STD-SDS lists preliminary design and detailed
design as separate phases in the life-cycle, we have grouped them
here because most of the research in software design does notdistinguish between them.

3.1 Tools Review

3.1.1 Arcturus

The Aroturus system [Standish, 1983], [Standish and Taylor,

1984], developed at the University of California at Irvine,
provides a variety of interesting information interfaces. Arcturus
was an experiment in supporting highly interactive creation and
debugging of Ada programs. Its style and user interface were
modelled on the InterLisp environment. Among its information
interfaces is an interactive Ada program design language (PDL).
which will be described here. Other Arcturus information
interfaces are considered in section 4.1.1.

The Arcturus PDL provides designers of Ada programs with an
information interface suitable for detailed design. The PDL
consists of a subset of the Ada language (see 4.1.1 for details on
the composition of that subset), expressed in standard Ada syntax,
augmented by a mechanism for including pseudo-code descriptions of
data objects and operations in a design. Specifically, the
Arcturus PDL permits an arbitrary string of characters enclosed by
"I" and ")" to appear anywhere that a name, type, declaration,
expression or statement could appear in a normal Ada program. Thus
a designer is free to express more abstract descriptions of parts
of an eventual Ada program than would be possible using the Ada
language alone. For example, a designer might write

AvgReading :- Iaverage of last ten samples):

or

idetermine next anticipated position);

as part of an Arcturus PDL design.

The Arcturus PDL represents a typical program design
language, similar in spirit to PDLs dating back to Caine and
Gordon (Caine and Gordon, 1975). It is singled out for treatment
here partially due to its applicability to Ada and partially due
to its relationship to other information interfaces and tools in

" T

the Arcturus environment. In particular, the Arcturus PDL can be
refined stepwise into executable Ada by expanding the
user-definable roots represented by the strings enclosed by {"
and 'P*. The Aroturus syntax analyzer, pretty printer and
template-driven editor can also all be applied to PDL
descriptions. Finally, Arcturus PDL can be transformed into the
same internal representation, itself an information interface, as
can Ada programs written in the Arcturus subset of Ada. Both that
subset and the internal representation are described in section4.1.1.

References related to Arcturus are:

Standish, Thomas A., "Interactive Ada in the Arcturus
Environment". Ada Letters, July-August 1983, pp. 25-35.

Taylor, Richard N. and Standish, Thomas A., "Steps to an
Advanced Ada Programming Environment". Proc. 7th
International Conference on Software Engineering, IEEE
Computer Society, 1984, pp. 116-125.

3.1.2 PIC/Ada

The PIC/Ada language and toolset are one manifestation of the
Precise Interface Control (PIC) project at the University of
Massachusetts. PIC/Ada is a set of language features compatible
with Ada, or Ada-like PDL8, intended to support the
programing-in-the-large activities that are associated with
preliminary design. Additional external information interfaces
pertinent to PIC/Ada include module stubs, module interconnection
descriptions and interface consistency reports. Module stubs
represent the views of a given module that are appropriate for the
purposes of one or more other modules. Module interconnection
descriptions contain information about the access that a given
module requests to other modules and the access to its own
contents that the module is willing to grant to other modules.
Interface consistency reports are the result of analyses of a
preliminary design that can be performed by PIC tools. The 4.
internal information interfaces associated with PIC/Ada are
internal representations similar to those employed by Arcturus
(see section 4.1.1). These internal representations are themselvesC
implemented as abstract data objects using a special purpose set
of tools developed for constructing such representations. Thus the
PIC/Ada toolset illustrates both information interfaces relevant
to preliminary design and information interface technology.

A reference for PIC/Ada is:

Wolf. Alexander. Clarke. Lori and Wileden. Jack, "Ada-Based
Support for Programming-in-the-Large", IEEE Software. Vol. 2.
No. 2, March 1985.

&4

3.2 Literature

The usual root information fragments found in the design
activity of software development include the requirements
specification as an input, and as outputs a series of design
documents including one or more of a functional specification,
architectural design, preliminary design, high-level design,
interface design, database design, system design, subsystem
designs, program designs and module designs. Some of these words
turn out to be synonymous when used by certain people but not when
used by others. Where a distinction is made between preliminary
design and detailed design, the most common dividing line is that
only the lowest level (usually called module or program design) is
called detailed, with all others called preliminary (or some other
term).

0
The non-root information fragments of design are less

universal and depend upon the specific method and notation being
used. Perhaps the most common fragments are some notion of
component (component, unit, module, program) and a (usually
hierarchical) structuring relationship among components. Others
are inputs and outputs (to some level of detail), functions
(either inherited from the requirements or derived from the
functions of the requirements analysis) and data definitions used
in interfaces and databases.

The following documents describe information interfaces
related to the major design methods.

DeMarco, T., Structured Analysis and System Specification,
Yourdon Press, 1978.

Fairley, R. E., "A Model of Software Structure", Proceedings
* of the Seventeenth Hawaii International Conference on System

Sciences 1984, V. 1, 1984, 4-6 Jan. 1984.

Freeman, Peter; Wasserman, Anthony I., Tutorial on Software
Design Techniques, (4th Edition). IEEE Computer Society
Press, 1983.

Gilb. Tom, "Software Engineering Using Design By Objectives'
Tools (DBO)". Software Engineering Notes, V. 9, No. 2. Apr.
1984, ACM SIGSOFT.

Gilb, Tom V Zvegintzov, Nicholas. Design by Objectives.
North-Holland, 1984.

Orr, K.T., Structured Systems Development, Yourdon Press.
1977.

Page-Jones, Meilir, Practical Guide to Structured Systems
Design, Yourdon Press, 1980.

Parnas, D.L., "On the Criteria to Be Used in Decomposing
Systems into Modules," Communications of the ACM, Vol. 5, No.
2, Dec. 1972. pp. 1053-58. (Reprinted in Classics in
Software Enginering, ed. E.N. Yourdon, Yourdon Press, 1979,
pp. 141-50.)

Peters, Lawrence J., Structured Design: Methods and
Techniques, Yourdon Press, 1981.

Warnier, J.D., Logical Construction of Programs, 3rd ed.,
trans. B. Flanagan, Van Nostrand Reinhold, 1976.

Weinberg, V., Structured Analysis, Yourdon Press, 1978.

Wirth, N., "Program Development by Stepvise Refinement,"
Communications of the ACM, Vol. 14, No. 4, April 1971, pp.
221-27.

Yourdon, E., and Constantine, L.L., Structured Design:
Fundamentals of a Discipline of Computer Program and Systems
Design, 2nd ed., Yourdon Press, 1978.

The following documents describe information interfaces
related to lesser known design methods, although not necessarily
less important to the design of the JSSEE.

Braek, R., "Unified System Modelling and Implementation",
Colloq Int de Commutation, Paris, Fr. May 7-11 1979, Publ by
Comite du Colloq Int de Commutation, Paris, Fr. 1979, V.3,
pp. 1180-1187.

Capella, G.; Di Leva, A.; Petrone, L.; Sirovich, F.;
"Program Development and Documentation by Step-Wise
Transformations: An Interactive Tool". Schneider, H. J.
(Editor), Proceedings of the International Computing
Symposium 1983 on Application Systems Development, Nurnberg,
Germany 22-24 March 1983, Publ. B. G. Teubner, Stuttgart,
Germany.

Cerchio, L.; Modesti, M.; Perardi, F.; Scrignaro, D., "A
System Design Based on SDL Methodology", Cselt Rapp. Tec.. V.
11. No. 6. Dec. 1983.

Estrin. G., "A Methodology for the Design of Digital Systems
- Supported by SARA at the Age of One," Proceedings of the
1978 National Computer Conference. Vol. 47, AFIPS Press,
1978, pp. 313-32.

Futamura, Y., Kawai, T., Horikoshi, H., and Tsutsumi, M.,
"Development of Computer Programs by PAD (Problem Analysis
Diagram)," Proceedings of the Fifth International Software
Engineering Conference, IEEE Computer Society, 1981, pp.
325-32.

!6I

Hawryszkiewyoz, Igor T., "A Semantic Design Method", IEEE
Trans. on Software Engineering, V. SE-9, No. 4, July 1983,
pp. 373-384.

Hoare, C.A.R, "Communicating Sequential Processes", Comm.
ACM, V. 21, No. 8, August 1978.

Kanda, Yasunor; Sugimoto, Masakatsu, "Software Diagram
Description: SDD and Its Application", Proc IEEE Comput Soc
Int Comput Software Appl. Conf. 4th, COMPSAC 80, Chicago, IL,
Oct. 27-31, 1980. Publ by IEEE, Piscataway, NJ 1980, pp.
300-305.

McDaniel, X., An Introduction to Decision Logic Tables,
Petrocelli/Charter, 1978.

MoQuillan, D., "Transaction Diagrams - A Design Tool," ACM
SIGPLAN Notices, Vol. 10, No. 5, May 1975, pp. 21-26.

Morton, Richard and Freburger, Karl, "Toward Methodology for
Functional Specification", Proc. COMPSAC 80, IEEE Computer
Society Press, 1980.

(I
Tichy, W. F., Software Development Control Based on Module
Interconnection, Dept. of Computer Sci., Carnegie-Mellon
Univ., Pittsburgh, PA, Proceedings of the 4th International
Conference on Software Engineering, Munich, Germany, 17-19
Sept. 1979.

The following documents are also related to traditional
design approaches, but relate specifically to preliminary design.

Babb, R. G., II, "Data-Driven Implementation of Data Flow
Diagrams", Dept. of Computer Sci. and Engng., Oregon Graduate
Center, Beaverton, OR, Sixth International Conference on
Software Engineering, Tokyo, Japan, 13-16 Sept. 1982.

Dreyfus, J. M.; Karacsony, P. J., "The Preliminary Design as
a Key to Successful Software Development", 2nd International
Conference on Software Engineering, San Francisco, CA, 13-15
Oct. 1976.

Goldman. Neil M., Three Dimensions of Design Development.
ISI/RS-83-2, University of Southern California, Information
Sciences Institute. July 1983.

Huff, S. L.. "Preliminary Design for Complex Software Systems
Using Graph Decomposition". Proceedings of the International
Conference on Cybernetics and Society, Boston. MA. 8-10 Oct.
1980, pp. 479-484.

Huff, S. L., "A Methodology for Supporting System Architects
During Preliminary Design", Inf. and Manage., V. 5, No. 4-5.
Sept.-Nov. 1982, pp. 259-268.

' ".

Matsumoto, Yoshihiro, "Software Design Methodology: Bridge
From Requirements Specification to Software Design", Jpn Annu
Rev Electron Comput Telecommun Comput Sci Techno 1982. Publ
by Ohmsha Ltd., Tokyo, Japan and North Holland Publishing
Co., Amsterdam, Netherlands 1982, pp. 175-192.

In addition to the root fragments found commonly, others that
are less common are the outputs of various design analyses. These
include traceability of requirements, completeness reports,
consistency checks and design review reports. The following
documents describe information interfaces of this type.

Beane, J.; Giddings, N.; Silverman, J., "Quantifying Software
Designs", Proceedings of the 7th International Conference on
Software Engineering, Orlando, FL, 26-29 March 1984, pp.
314-322.

Lamb, S.S.; Leck, V.G.; Peters, L.J. and Smith, G.L., "SAMM:
A Modeling Tool for Requirements and Design Specification",
Proceedings of COMPSAC 78, IEEE Computer Society. 1978, pp.
101-08

Leveson, Nancy G.; Stolzy, Janice L., Analyzing Safety and
Fault Tolerance Using Time Petri Nets, Technnical Report No.
220, University of California, Irvine, Dept. of Information
and Computer Science, July 1984.

Romanos, J. P., "The Software Design Processor", Proceedings
of COMPSAC the IEEE Computer Society's Third International
Computer Software and Applications Conference. Chicago, IL
6-8 Nov. 1979.

One area of considerable disagreement related to the
information interfaces of design is the temporal relationships
among the design products. Two areas where this is particularly
true are decomposition versus composition and the control-first
versus data-first approaches. The following documents describe
design information interfaces that relate to design approaches
that are less common, but still not considered futuristic.

Diaz-Herrera, Jorge L.. "Pragmatic Problems with Step-Wise
Refinement Program Development", Software Eng. Notes, V. 9,
No. 2, Apr. 1984, ACM SIGSOFT.

Gibbs, Simon, Tsichritzis, Dionysis, "A Data ModelIng
Approach for Office Information Systems". ACM Trans. on -
Office Information Systems, V. 1. No. 4, October 1983. pp.
299-319.

Jackson, M.A., Principles of Program Design, Academic Press.
1975.

....

Jefferson, David K., Information System Design Methodology:
Global Logical Data Base Design, David W. Taylor Naval Ship
Research and Development Center Report DTNSRDC-82/057, August
1982.

Orman, Levent, "An Array Theoretic Specification Environment
for the Design of Decisions Support Systems", International
J. of Policy Analysis and Information Systems, Vol. 6. No. 4,
1982, pp. 373-391.

The following documents discuss formal approaches to design
specifications or special design languages, but do that within the
usual context of design.

Bauer, F.L., et al., "Programing in a Wide Spectrum
Language: A Collection of Examples", Science of Computer
Programming, Vol. 1, No. 1, October 1981.

Bjorner, Dines, and Jones, Cliff B., Formal Specification and
Software Development, Prentice-Hall International, 1982.

Black, Andrew P., Report on the Programming Notation 3R,
(Technical Mono), Oxford Univ. (England), Programming
Research Group, Report No. PRG-17, 1980.

Clemmensen, G. B.; Oest, 0. N.," Formal Specification and
Development of an Ada Compiler-A VDM Case Study", Proceedings
of the 7th International Conference on Software Engineering,
Orlando, FL, 26-29 March 1984, pp. 430-440.

De Santo, R.J., "Using Finite-State and Structured Design
Techniques for Embedded Software Design:. Proceedings of the
IEEE 1978 National Aerospace and Electronics Conference,
NAECON, 16-18 May, 1978. Dayton, OH, pp. 236-241.

Luckman, David, and von Henke, Fredrich W., "An Overview of
Anna, a Specification Language for Ada", IEEE Software, Vol.
2, No. 2. March 1985, pp. 9-22.

Markowitz, H.M., Malhotra, A., Pazel, D.P., "The EAS-E
Application Development System: Principles and Language
Summary", Comm. ACM, Vol. 27, No.8, August 1984, pp. 785-799.

Mekly, Leon J.; Yau, Stephen S.: "Software Design
Representation Using Abstract Process Networks", IEEE Trans
Software Eng.. V.SE-6, Sept. 1980, pp. 420-435.

Schneider, Hans-Jochen, ed., "Formal Models and Practical
Tools for Information System Design", Proceedings of the IFIP
TC-8 Working Conference on Formal Models and Practical Tools
for Information System Design, North-Holland, 1979.

Sufrin, Bernard, Formal Specification of a Display Editor,

."; " '" ; " ;.'" "'i4 " " " ; "" " "- "" "" ."'o" '€ " '" '"" 0

i PU WX AM in W i n .n r L' t rl KI I T r W IV I -d I? % r f % L V-.V

(Technical Mono.), Oxford Univ. (England). Programming
Research Group, Report No. PRG-21, 1981

An important part of preliminary design is database design.
References related to database design can be found in Section 18.1
below.

When detailed design is a separate phase, the product of that
activity is usually the design of the algorithm of a single
component. The form of that design depends upon the notation
used, such as flowcharts or pseudocode. In either case, however,
the non-root fragments are almost always those of programming
control structures, such as selection, iteration and procedure
call. Hence, the information fragments of detailed design are
largely independent of notation, except that some notations allow
more control structures than others (cf. Nassi-Shneiderman
diagrams versus flowcharts). The following documents describe
information interfaces that are normally associated with detailed
design.

Belcastro, Richard J., "Specification Template Speeds
Software Design", EDN, V.27, Oct. 27, 1982, pp. 233-236.

Caine, S.H., and Gordon, E.K., "PDL - A Tool for Software
Design," Proceedings of the 1975 National Computer
Conference, Vol. 44, AFIPS Press, 1975, pp. 271-76.

Callender, E.; Hartsough, C.; Kleine, H., "SDDL: Software
Design and Documentation Language", Jet Propulsion Lab.,
Pasadena, CA, Proceedings of the NBS/IEEE/ACM Software Tool
Fair, San Diego, CA, 10-12 March 1981.

Chapin, N., "New Format for Flowcharts," Software - Practice
and Experience, Vol..4, No. 4, Oct.-Dec. 1974, pp. 341-57.

Guttag, J. V.; Horning, J. J., Preliminary Report on the
Larch Shared Language, CSL-83-6, Xerox Palo Alto Research
Centers, December 1983.

Katzan, H., Jr., Systems Design and Documentation: An
Introduction to the HIPO Method, Van Nostrand Reinhold, 1976.

Lucas, Peter; Thatcher, James W.; Zilles, Stephen N., A Look
at Algebraic Specifications, IBM Research, n.d.

Nassi, I. and Shneiderman, B., "Flowchart Techniques for
Structured Programming," ACM SIGPLAN Notices, Vol. 8. No. 8,
August 1973, pp. 12-26.

Mohri, T.; Ono, E.; Sato, H.; Uehara, S., "PDAS: An
Assistant for Detailed Design and Implementation of
Programs", Proceedings of the 7th International Conference on
Software Engineering, Orlando, FL, 26-29 March 1984.

ZS

v nn1~J~ ~ 34, L U WT1.f -. U7U~wL~ -U V . W- ''W W.;~W J ~~. W

One of the goals of the STARS project is to promote
reusability. This subject pertains to both design and code, and
much of the current research in this area does not distinguish
between them. Reusability is also considered by some to be a
subset of rapid prototyping, which we have listed under future
paradigms below. The reader should, therefore, look at the
literature on rapid prototyping to find out more about
reusability. There is also much research into Ada-specific reuse
of packages; the reader is encouraged to look in this area as
well.

Biggerstaff, T., Editor, Proc. ITT Workshop on Reusability in
Programming, ITT Programming, 1983. (Selected papers
reprinted in IEEE Transactions on Software Engineering. V.
SE-10,No. 5, Sept. 1984.)

Bowen, Thomas P.; Post, Jonathan V.; Presson, P. Edward;
Schmidt, Robert; Tsai, Juitien, Software Interoperability and
Reusability.V. 1-Final Report, Rome Air Development Center,
Griffiss AFB, NY, July 1983.

Bowen, Thomas P.; Post, Jonathan V.; Presson, P. Edward;
Schmidt, Robert; Tsai, Juitien, Software Interoperability and
Reusability, V.2 - Guidebook for Software Quality
Measurement, Rome Air Development Center, Griffiss AFB, NY.
July 1983.

C.V. Ramamoorthy, Ed., IEEE Transactions on Software
Engineering, Vol. SE-10, No. 5, September 1984, Special Issue
on Software Reusability.

The following document does not fit easily into one of the
previous groupings of design information interfaces. It is
interesting, however, because it identifies some information
fragments that, if generated during design, would greatly simplify
the process of database conversions whenever that becomes
necessary.

Gallagher, Leonard J., "Database Conversions Demand Common
Standards for Data Structures", Data Management, January
1985.

4.0 Code, Unit Test and Debug

4.1 Tools Review

4.1.1 Arcturus

The Arcturus system (Standish, 1983], [Standish and Taylor,
1984]. developed at the University of California at Irvine,
provides a variety of interesting information interfaces.

Arcturus was an experiment in supporting highly interactive
creation and debugging of Ada programs. Its style and user
interface were modelled on the InterLisp environment. Among its
information interfaces is an interactive Ada program design
language (PDL), which is described in section 3.1.1. Here we
describe those information interfaces of Arcturus pertinent to%
coding (interactive Ada and the Arcturus internal representation)
and debugging (interactive Ada and performance measurement
output).

Interactive Ada is in fact a subset of Ada, supported by
tools to permit interactive execution at a statement-by-statement
level. The subset is essentially the Pascal-superset part of Ada
-- the basic sequential control constructs and statements, plus
packages. It omits tasking, defers type-checking to run-time and
does not permit overloading. Interactive Ada can be processed by
the Arcturus syntax-checker, pretty printer and template-driven
editor. It is primarily interesting, however, because of the
Arcturus tools that permit individual expressions or statements%
in interactive Ada to be interpreted as soon as they are entered%
by a user. This feature provides users with immediate feedback on
a program as it is being developed. It also permits the
interactive Ada language itself to serve as a useful debugging
tool. To query the current value of any variable in an interactive
Ada program, for example, the user merely types that variable's
name. The interactive Ada interpreter evaluates the expression
consisting of that name and prints the result, which is just the
variable's current value. Thus interactive Ada is representative
not only of the standard information interface which is a
programming language, but also of an information interface
facilitating program debugging.

W4.

Another Arcturus information interface relevant to coding,
although it is also relevant to design, is the Arcturus internal
representation. Unlike the other Arcturus information interfaces
considered here and in section 3.1.1, all of which are external
interfaces, this one is an internal interface. The internal
representation is constructed from an Arcturus PDL or interactive
Ada program and used as a basis for interpretation. It can also be
translated into a form suitable for compilation by an Arcturus
tool known as the "export laundry", while compiled forms of Ada
programs can be translated into the internal representation by a
complementary "import laundry" tool. Of course, the compiled
version of an (interactive or otherwise) Ada program is itself an
information interface. The Arcturus internal representation
consists of nested records, linked into a tree data structure and
annotated with symbol tables. In essence, the tree of nested
records is an abstract syntax tree which constitutes a condensed
representation of a program's semantics. This representation
provides a convenient information interface for tools such as the
interpreter or various proposed analysis tools that must operate
on the semantic aspects of the program.

A final class of information interfaces found in Arcturus is

performance measurement output. This external information
interface is particularly useful during debugging. In Arcturus,
performance measurement output can be provided in the form of
histograms indicating what percentage of execution time is spent

* in various parts of a program. Alternatively, a oolor-coded
version of the program can be presented, with "hotter" colors
(toward red) indicating those parts of the program whose execution
consumes the most time while "cooler" colors (toward blue)
indicate those parts consuming the least time. In either
manifestation, this feature of Arcturus represents another

0 interesting, and relatively unusual, type of information
interface.

References for Arcturus are:

Standish, Thomas A., "Interactive Ada in the Arcturus
0 Environment", Ada Letters, July-August 1983, pp. 25-35.

Taylor, Richard N. and Standish, Thomas A., "Steps to an
Advanced Ada Programming Environment", Proc. 7th
International Conference on Software Engineering, IEEE
Computer Society, 1984, pp. 116-125.

4.1.2 Toolpack

The Toolpack environment [Osterweil, 1983), created by a
consortium of university, government and industrial research
laboratories, is an experimental environment created to support
the development of numerical analysis software in Fortran. It
contains several representative information interfaces, primarily
related to coding, testing and debugging. Perhaps of greater
interest is Toolpack's information interface technology, which is
contained in the Odin subsystem. Here we describe the Toolpack
information interfaces, while Odin's information interface
technology is discussed in section 4.1.3.

One class of information interfaces found in Toolpack are
those related to the coding, compilation and execution of
programs. The main external information interfaces are program
units and program unit groups (PUGs). The program unit is simply a
Fortran program unit, while a PUG is a named collection of program
units. Various versions of program units and PUGs may exist among
the information interfaces of a Toolpack system. including Ratfor
versions, various dialects of the Fortran code, and versions
conforming to various text formats. Internal information
interfaces in this class include token streams, parse trees.
symbol tables and object modules. Various versions of parse trees.
resulting from program transformations (such as to change
dialects of Fortran) might be among these internal information
interfaces.

Another class of information interfaces found in Toolpack are
those related to analysis, testing and debugging. The external
information interfaces in this class are test data collections

(TDCs) and error reports. TflCs consist of test data sets and
optional output specifications. Error reports list semantic errors
discovered through static analysis, data flow analysis, or
portability checking. Internal information interfaces in this
class include annotated flow graphs and versions of programs
instrumented to support debugging.

A third class of information interfaces found in Toolpack are
those related to invocation of Toolpack tools. These external
information interfaces include options packets, which provide
customizing directives to tools for specific applications, and
procedures, which are predefined sequences of Toolpack commands.
Although our interests in this report do not extend to the
invocation interfaces of environments, we mention these
invocation-related information interfaces here in the interest of
completeness.

It should be noted that, although information interfaces can
be thought of as the contents of a project database, Toolpack
explicitly separates this conceptual viewpoint from the actual
implementation of its information interfaces. The result is that
only a small number out of the many information interfaces listed
above may actually be physically present in a Toolpack database at
any given time, but that from the user's point of view they may
all be considered to be present there. This situation arises from
the approach to defining information interfaces employed in
Toolpack. which is discussed in the section on Odin. 4.1.3 below.

A reference for Toolpack is:

Osterweil, Leon J. "Toolpack -- An Experimental Software
Development Environment Research Project", IEEE Transactions
on Software Engineering. November 1983, pp. 673-685.

4.1.3 Odin

The Odin system [Clemm, 1984] is intended to serve as the
basis for an extensible program development environment. Odin
itself is an outgrowth of the Toolpack project and an extension of
the Integrated System of Tools (IST) subsystem found in Toolpack
(Osterveil, 1983]. For our purposes the main capability provided
by Odin is for users to define information interfaces and their
relationships to other information interfaces and to tools in a
software development environment.

Odin's approach is to treat all information interfaces as
files or sets of files and to provide mechanisms allowing users to
define file types and operations specified in terms of those file
types. The various file types may be thought of as distinct views
of some part of a software system. For example, test.f:fmt and
test.f:obj might be two file types corresponding to two different
views of the Fortran program stored in the file "test" (the
extension .f denotes a Fortran base (primitive) object type in
Odin). the former a formatzed view of the source and the latter an

oS

* %

object code view. As this example indicates, Odin supports the
definition of both external and internal information
.nterfaces.

* 'Two languages are provided by Odin. One is a command
language, which permits a user to request the creation of a view.
Essentially, this language lets a user name a view (file type or
version of an information interface) that is desired (e.g.,
test.f:obj) and optionally indicate where a copy of that view
should be stored (e.g., test.f:obj~test2.f:obj). The other Odin

* language is a specification language in which users can define
new views (file types or information interfaces) and indicate how
those views are to be created. Odin transforms this information
into a derivation graph, which indicates what tools can be used to
create a file (information interface) of one type from a file of

0 some other type. This graph then encodes the relationships amongo information interfaces and tools, and provides a kind of
representation of all the possible information interfaces in a
given environment as well as the kinds of operations that can be
performed on them. Using this representation, Odin can decide
which types of views (information interfaces) should be physically
stored in its database and which can be generated on demand,
through the application of one or a sequence of tools. Information
interfaces in the latter group may then be physically stored or
not, depending on other considerations such as file system
capacity, but are still conceptually present from the user's
viewpoint.

A reference for Odin is:

Clemm, Geoffrey M. "ODIN - An Extensible Software
Environment: Report and User's Reference Manual", Technical
Report CU-CS-262-84, Department of Computer Science,
University of Colorado, 1984.

4.1.4 Diana and IDL

Diana, a Descriptive Intermediate Attributed Notation for
Ada, was developed by researchers from Carnegie-Mellon University,
the University of Karlsruhe and Tartan Laboratories. It is based
on two earlier proposals for intermediate forms for Ada -- TCOL
(or more precisely, the Ada version of TOOL). developed by the
PQCC project at Carnegie-Mellon. and AIDA. developed at the
University of Karlsruhe.

Diana is intended as an intermediate representation for Ada
programs. As such, it represents a natural information interface
between the front end and back end of a compiler. It is also
intended, however, to be useful as an information interface
between other tools in an Ada software development environment.
Diana is designed to encode the information about an Ada program
that can be derived from lexical, syntactic and static semantic
analyses, but not to contain information resulting from dynamic
semantic analysis. optimization or code generation.

Diana is most properly viewed as an abstract data type.
defining a class of information interfaces. Any instance of that
abstract data type, i.e., any specific information interface, is a
Diana representation of a specific Ada program. Diana itself
defines a set of operations providing the only means for accessing '

or modifying an instance of the abstract data type. Although the
Diana reference manual offers example implementations for the '

abstract data type, these only constitute constructive proofs that
Diana can be implemented and do not serve to define what Diana
actually is.

The concept of an attributed tree serves as a conceptual
model for Diana. That is, a Diana representation of an Ada program
may be thought of (though it need not be implemented as) a tree of
nodes, each of which may have a set of attributes associated with
it. Therefore, the definition of Diana is given in terms of a set
of classes of nodes and the attributes associated with each class.
Conceptually, at least, all information about an Ada program's
syntax and static semantics is captured in this attributed tree.
Hence, unlike the Arcturus internal form, Diana does not include a
conceptually distinct symbol table. but rather incorporates all
the information traditionally contained in a symbol table in the
attributed tree. An implementation of this conceptual attributed
tree may, of course, actually employ symbol tables if the
implementors so choose.

The Interface Description Language, IDL, was developed at
Carnegie- Mellon and employed by the developers of Diana. IDL
provides a notation in which abstract descriptions of a class of
data objects, especially information interfaces, can be
formulated.

IDL is especially well-suited for describing information
interfaces since it treats all data objects as (possibly
degenerate) attributed trees. The main descriptive capabilites of
IDL are aimed at defining the various classes of nodes and their
associated attributes comprising such a structure. In fact, the
Diana reference manual uses IDL to present the definition of
Diana.

A primary motivation for IDL was the need to facilitate -

interchange of information among tools in a software development
environment that might want or need to use different internal
representations for the same information. Therefore, IDL
concentrates on supporting abstract descriptions of information
interfaces rather than description of the implementation details
related to those interfaces. IDL does. however, permit
specification of some implementation details through a
'representation specification' feature similar to Ada's.

Associated with IDL is a processor for translating IDL
definitions of information interfaces into implementations that

can be used by the tools in a software development environment.I

This processor assumes a somewhat restrictive structure for tools
and their interactions, but given that structure it is sufficient
to automate the process of going from an IDL description to the
data structure definitions and code necessary to implement the
interface defined by that description.

References for Diana and IDL are:

Evans, A. Jr. and Butler, K. J. (eds.), "Diana Reference
Manual(Revision 3)", Technical Report TL 83-4, Tartan
Laboratories Inc.,Pittsburgh. Pennsylvania, February 1983.

Lamb. D. A., "Sharing Intermediate Representations: The
Interface Description Language", Technical Report
CMU-CS-83-129. Computer Science Department, Carnegie-Mellon
University, Pittsburgh,Pennsylvania, May 1983.

Nestor, J. R., Vulf, V. A. and Lamb, D. A., "IDL - Interface
Description Language: Formal Description", Technical
ReportComputer Science Department, Carnegie-Mellon
University Pittsburgh, Pennsylvania, February 1983.

4.1.5 EDL High-Level Debugging Toolset

The Event Definition Language (EDL) is part of an approach to
high-level debugging developed at the University of Massachusetts.
This approach, called Behavioral Abstraction, is an alternative to
traditional debugging techniques, which are based on a
detail-intensive, unit-at-a-time perspective. In the Behavioral
Abstraction approach a system's activity is viewed as consisting
of a stream of significant, distinguishable behaviors, termed
'events'. Selective clustering of sequences of events into higher
level events produces increasingly abstract views of the system.
This approach permits a user to deal with only the level of detail
that is appropriate for the current debugging problem, rather than
being perpetually mired in low level details of system activity.

The Event Definition Language has been created to facilitate
the description of behavioral patterns that a system might
exhibit. Users of EDL use primitive and previously defined events,
together with a set of event sequencing operators and a means for
filtering events based on their characteristics, to describe
behavioral patterns of interest in the system. Thus software
developers can use EDL to flexibly define viewpoints that
highlight those aspects of system behavior that are relevant to
specific questions currently under investigation.

A prototype set of debugging tools supporting the Behavioral
Abstraction framework and the Event Definition Language implements
some of the fundamental capabilities required for high-level
debugging. Specifically, it permits users to monitor behavior of a
system from any arbitrary high-level perspective that they may
wish to define.

I ia

r in ' ' ' -'tIWW flW Wa WS - UW*WW nx M t .* W 1 W *lr W- IV r n-nwW~ W- , % P -IP-

The EDL definitions of viewpoints for use in debugging a
system represent another kind of information interface. These
definitions are both internal and external, since they are created
and used by the developers who wish to debug the system and they
are also used internally by the tools composing the Behavioral
Abstraction debugging toolset.

References for EDL are:

Bates, P. and Vileden, J. "High Level Debugging of
DistributedSystems", Journal of Systems and Software, 3. 4,
(December 1983).pp. 255-264.

Bates, P. and Vileden, J. "An Approach to High-Level
Debugging of Distributed Systems". Proc. SIGPLAN/SIGSOFT
Symposium onligh-Level Debugging. Asilomar, California (March
1983). pp. 24-33.

4.2 Literature

The code, unit test and debug activity uses information
interfaces related to each of coding, testing and debugging. The
subject of testing is dealt with in Sections 5 and 9. as well as
here.

The obvious root information fragment of coding is the source
code of the unit being coded. Others include the results of
various static and dynamic analyses that may be performed. as well
as the outputs of the compilers, interpreters, linkers and loaders
that provide the transition between coding and testing. The
non-root fragments of coding depend somewhat on the syntax and
semantics of the programming language being used, particularly
where special purpose languages are used, and on the nature of the
language translation systems used (compiler. linker and loader, or
whatever). The following documents describe information
interfaces related to coding.

Amen, J.; Lehrhaupt, H., "Software Documentation an
Automated Approach". Proceedings of Trends and Applications
1982. Advances in Information Technology. Gaithersburg, XD
27 May 1982, pp. 57-64.

Diaz-Herrera. J.L., Flude. R.C.. "PASCAL/HSD: A Graphical
Programming System". Proc. COMPSAC 80, IEEE Computer Society
Press. 1980.

Evans, A., Jr., and Butler, X.J.. eds., Diana Reference
Manual (Revision 3). Report TL 83-4. Tartan Laboratories.
Inc., February, 1983.

Gries, David, The Science of Programming, Springer-Verlag.
1981.

Kojima, K.; Nakajima, R; Yuasa, T.. "The Iota Programming

.%

System-A Support System for Hierarchical and Modular
Programming". Lavingston, S. (Editor), Information Processing
'80. Proceedings of the IFIP Congress 80, Tokyo. Japan. 6-9
Oct. 1980, Publ. North-Holland, Amsterdan, Netherlands, pp.
299-304.

Linger. R.C.; Mills, N.D.; Witt, B.I., Structured
Programming: Theory and Practice, Addison-Wesley Pub. Co.,
1979.

Millard, D. P., "Automated Documentation for Real-Time
Software", IEEE Southeastcon '83 Conference Proceedings,
Orlando, FL 11-14 April 1983, pp. 78-80.

The root information fragments of unit testing include
special purpose code (stubs and drivers), and test plans,
specifications, procedures, data and results. Stubs and drivers
are simply instances of more code. The non-root fragments of
plans, specifications and procedures are usually defined by
standards, if any, covering these topics. Test data generation
and the kinds of results which should come from testing are the
subjects of several of the references below. The following
documents describe information interfaces related to unit testing.

Bourgonjon, R. H., "Chill Testing", IEEE Proceedings COMPSAC
83: The IEEE Computer Society's Seventh International
Computer Software and Applications Conference, Chicago, IL,
7-11 Nov. 1983, pp. 245-246.

DeMillo, Richard A., Program Mutation: An Approach to
Software Testing. U.S. Army Research Office. Triangle Park,
NC, April 1983.

Gannon, John D.; McMullin, Paul R., "Combining Testing with
Formal Specifications: A Case Study", IEEE Trans. Software
Eng., V. SE-9 3 May 1983, pp. 328-335.

Debugging. in the sense implied by coupling it with coding
and unit testing, is usually an informal activity in which the
programmer interacts with the program to diagnose and correct the
defects detected during unit testing. The fragments of debugging
depend highly on the debugging tools available and being used.
Most interactive debuggers, whether source language or machine
language oriented. include such concepts as breakpoints,
instructions or statements, variables, values and locations of
code and data. Debuggers also depend on symbol tables and load
maps. Batch debugging environments include dumps, traces and snap
shots. In more formally controlled situations there may be defect
analysis reports and corrective action reports that are generated.

The following documents describe information interfaces
related to debugging.

Casey, Dan; Fellows. Jon; Finfer. Marcia, Software Debugging
Methodology. Volume III. Literature and Site Surveys. Rome
Air Development Center, Griffiss AFB, NY, Report No.
RADC-TR-79-57-Vol.-3, April 1979.

Dean, A.; Gaines, J.; McCoy, W., "HOL Debug and Test in the
Trident Fire Control Environment (Weapons Systems)", Kirk. D.
E. (Editor), IEEE Sixteenth Asilomar Conference on Circuits.
Systems and Computers, Pacific Grove, CA, 8-10 Nov. 1982,
1983, pp. 182-168.

Dunn, R., Software Defect Removal, McGraw-Hill, 1984.

Weiser. Mark. "Program Slicing", IEEE Trans. on Software
Engineering, V. SE-IO, No. 4. July 1984, pp. 352-357.

Smith. Truck, Secrets of Software Debugging, TAB Books,
1984. %

5.0 Integration and System and Acceptance Test

See also validation and verification.

Beizer, B.. Software System Testing and Quality Assurance,
Van Nostrand ReinholA, 1984.

Beizer, Boris, Software Testing Techniques, Van Nostrand
Reindhold. 1982.

Compton. M. T.. "Testing with Inspection Procedures (Computer
Software)". IEEE Conference Digest of the International
Electrical. Electronics Conference and Exposition, Toronto.
Canada, 2-4 Oct. 1979, pp. 22-23.

Greenspan, A. M., "Real Solution for Enhancing Productivity
in TPS Development". AUTOTESTCON '83. 'Nfw Horizons in
Automatic Testing', Fort Worth, TX, 1-3 Nov. 1983, pp.
122-127.

Haley. Allen; Zweben, Stuart, An Approach to Reliable
Integration Testing (Technical Report), Computer and
Information Science Research Center.Air Force Office of
Scientific Research, Bolling AFB. DC. Report No.
OSU-CISRC-TR-81-5; AFOSR-TR-81-0578, May 1981.

Hetzel. W.C., ed.. Program Test Methods, Prentice-Hall, 1973.

Hicks. T. C.. "System-Level Software Testing", Electron Test,
V. 6, No. 9, Sept. 1983, pp. 61-3.

Janjsz, Paul E.; Turoczy, William R., Application of Software
Test Tools to Battlefield Automated Systems. U.S. Army

~'..v~/. .. ~,~y~%SV4~5, ~ ~ ',' %.*.%;..~* %. V ~ ~.#.S...'/K..7* %:..;.S:.y 9 %?

Armament Research and Development Center, Dover, NJ. July
1984.

Klinger, D. R., "Integrating Real-Time Software with a System
Tester", Kirk, D. E. (Editor), IEEE Sixteenth ASILOMAR
Conference on Circuits, Systems and Computers. Pacific Grove,
CA, 8-10 Nov. 1982, pp. 535-538.

Lozier, D. W.; Maximon, L. C.; Sadowski, W. L., "Performance
Testing of a Fortran Library of Mathematical Function
Routines - a Case Study in the Application of Testing
Techniques", Journal of Research of National Bureau of
Standards Sect. B, Math Sci., V. 77B, 3-4 Jul-Dec 1973, pp. U

101-110.

Miller, Edward and William E. Howden, Tutorial: Software
Testing and Techniques", IEEE Computer Society, 1981.

Perry, William E., A Structured Approach to Systems Testing,'
Prentice-Hall, 1983.

Spencer, Richard H., Planning, Implementation and Control in
Product Test and Assurance, Prentice-Hall. 1983.

6.0 Deployment, Maintenance and Support

6.1 Tools Review

6.1.1 GTE Change Tracking System

The GTE Change Tracking System (CTS) (Vanderlei, 1983]
provides a typical example of tools used in maintenance and
support. This tool implements a system for managing
problem-handling, from initial report to final disposition.

The CTS introduces a set of related information interfaces
into the GTE software development environment. One of these is the
CTS problem report and tracking form, which is originated when a
problem is reported and then is updated at each step in resolving
that problem. Another information interface related to CTS is a
statistical summary of CTS activities, i.e., number of reported
problems, current status of those problems, etc.

A reference for CTS is:

Vanderlei, Kenneth W., "Software Development Methodology and
Practices", GTE Network Systems Journal, Third Quarter 1983.
pp. 76-82.

-I %.. %

6.2 Literature

See also configuration management.

Bernstein, I; Yubas, C. M., "Software Manufacturing", Des
Autom Conf. 15th Proc., Las Vegas, NV 19-21 June 1978, pp.
455-462.

Dorr, Oscar J., "Software Logistics", Logistics Spectrum,
Journal of the Society of Logistics Engineers, Vol. 18, No.
1, Mar. 1984.

Francis, Webster E. Maj., Distribution of Software Changes
for Battlefield Computer Systems: A Lingering Problem, U.S.
Army Training and Doctrine Command, Ft. Monroe, VA, Jun. 1983

Glass, Robert L.; Ronald A. Noiseux, Software Maintenance
Guidebook, Prentice-Hall, 1981.

Hall, John F. LT III, Documentation for Software Maintenance,
Naval Postgraduate School, Monterey, CA, Dec. 1983.

Herndon, M.A., and McCall, J.A., *A Tool for Software
Maintenance Management", Proc. A Conference on Software
Development Tools, Techniques, and Alternatives, July 25-28,
1983, Arlington, Va., IEEE Computer Society Press.

Ince, D. C., "The Provision of Procedural and Functional
Interfaces for the Maintenance of Program Design Language and
Program Language Notations", Sigplan Not., V. 2, Feb. 1984,
pp. 68-74.

Laprie, J. C., "Evaluating the Dependability of Operational
Soitware", Tech. and Soi. Inf. (France), V.2, No. 4. 1983,
pp. 221-234.

Marca, D., "Software Manufacturing and Large Software
Maintenance", Digest of Papers COMPCON Spring '84,
Twenty-eighth IEEE Computer Society International Conference,
San Francisco, CA, 27 Feb-i Mar 1984, pp. 312-315.

Parikh, Girish, Techniques of Program and System Maintenance,
Winthrop Publishers. Inc.. 1982.

Parikh. G. and N. Zvegentzov. Tutorial on Software
Maintenance, IEEE, 1983.

Schneidenwind. Norman F., Software Maintenance: Improvement
through Better Development Standards and Documentation, Naval
Postgraduate School, Monterey, CA. Report Nr NPS-54-82-002,
22 Feb. 82.

Upchurch. Robert B. LT. Improvements to Software Maintenance
Methods in Real Time Embedded Aviation Flight Systems, Naval

*2~~' *1

Postgraduate School, Monterey, CA, Dec. 1983.

7.0 Project Management

7.1 Tools Review

7.1.1 Enhanced Project Evaluation Schedule Tool

The Enhanced Project Evaluation Schedule Tool (EPEST) [Rice,
19831 is a typical example of a project management tool. This
tool offers cost estimation, task scheduling and progress
monitoring support. The information interfaces required for EPEST
include cost estimation charts, weekly group progress reports,
milestone charts, and activity schedules.

A reference for EPEST is:

Rice, Verner, "Software Development Tools: Goals and Status",
GTE Network Systems Journal, Third Quarter 1983, pp. 83-86.

7.2 Literature

The information interfaces of project management are related
to planning and controlling software projects. At the root level,
the fragments include project plans, status reports, and budgets.
At the non-root level, these include a variety of alternative ways
of recording each of the root fragments. For example, project
plans can include PERT diagrams, which, in turn, are made up of
activities, durations and dependency relations. In general,
project managers deal with tasks, resources and relationships
among them.

Abdel-Hamid, T. K.; Madnick, S. E.. "A Model of Software
Project Management Dynamics", Proceedings of COMPSAC 82, IEEE
Computer Society's Sixth International Computer Software and
Applications Conference, Chicago, IL, 8-12 Nov. 1982, pp.
539-554.

Agresti, W; Card, D.; Church, V.; McGarry, F., Managers
Handbook for Software Development, National Aeronautics and
Space Administration, Greenbelt, MD, Report No. NAS
1.15:85604; SEL-84-001; NASA-TM-85604, Apr 1984.

Bernstein, L., "Software Project Management Audits", J. Syst.
and Software, V. 2, No. 4, Dec. 1981, pp. 281-287.

Boehm. Barry W., Software Engineering Economics,
Prentice-Hall, 1981.

Campbell, I.; Stilling, C., "GALAAD: A Software Management
System". Productivity and Data Processing: Two Essentials
for a Dynamic Company. Proceedings of the Spring Convention.
V. 2. Paris. France, 30 May-3 Jun 1983. pp. 208-212

' .° ' '. .. ' - .,. - . .. ° o ,-, ," -, % -, -• ', % %%S ' - %

Daly, Edmund B.; Minichowicz, Donald A., "Management of Large
Software Development for Stored Program Switching Systems",
GTE Autom Electr., J.V. 17, 5 Sept. 1979, 155-160.

DeGiorgio, A.; Esposito, F.; Ingravallo. G.; Mascolo, R., "A
System of Documentation Standards for Software Project
Management", AICA '79 Conference, Bari, Italy, 10-13 Oct.
1979, pp. 167-172.

Evans, Michael W., Productive Software Test Management,
Wiley-Interscience, 1984.

Evans, Michael W.; Piazza, Pamela; Dolkas, James B.,
Principles of Productive Software Management, Wiley and Sons,
1983.

Ferrentino, A. B., "Software Manager's Workstation", EASCON
'83: 16th Annual IEEE Electronics and Aerospace Systems
Conference, Washington, DC, 19-21 Sept. 1983.

Forshee, Michael et al., Handbook for Evaluation and Life
Cycle Planning for Software, V. 2 - Contract Management,
Electronic Systems Division, Air Force Systems Command,
Hanscom AFB, MA, Feb. 1983.

Forshee, Michael et al., Handbook for Evaluation and Life
Cycle Planning for Software, V. 3 - Reviews Audits and CPCI
Specifications, Electronic Systems Division, Air Force
Systems Command. Hanscom AFB, MA, Feb. 1983.

Freeman, Peter, Wasserman, Anthony I., Houghton, Raymond C.,
Jr., "Comparing Software Development Methodologies for Ada: A
Study Plan", Software Engineering Notes, V. 9, No. 4, July
1984, ACM SIGSOFT.

Matsumoto, Yoshihiro, "Management of Industrial Control
Software Production", Computer Magazine, V. 17, No. 2,
February 1984, pp. 59-72.

Metzger, P.W., Managing a Programming Project, Prentice-Hall,
1973.

Moorehead. Donald F. LCDR; Ransbotham, James T. Jr. LCDR, A
Program Manager's Methodology for Developing Structured
Design in Embedded Weapon Systems, Naval Postgraduate School.
Monterey, CA, Dec. 1983.

Neumann, Albrecht J., Management Guide for Software
Documentation, NBS, Systems & Software Technology Div.,
Washington, DC, National Bureau of Standards Spec. Publ.
500-87, Jan. 1982.

Patrick, Robert L.; Ware, Willis H., Perspectives on

• -I

Oversight Management of Software Development Projects, The
Rand Corp., Santa, Monica, CA, July 1983.

Tausworthe, R. C., "The Work Breakdown Structure in Software
Project Management", J. Syst. and Software, V. 1, No. 3,
1980, pp. 181-186.

Walker, M.G., Managing Software Reliability: The
Paradigmatic Approach, Elsevier/North-Holland, 1980.

Wolberg, John R., "Costing Model for Software Conversions",
Software Pract. Exper, V. 12, 11 Nov. 1982, pp. 1043-1049.

8.0 Configuration Management and Version Control

8.1 Tools Review
8.1.1. GTD-5 EAX SoftwarTe Management Support System

The GTD-5 EAX Software Management Support System (SMSS)

[Chauza and Fortune, 1981] is a typical facility for
configuration management. It consists of two major components, the
UNIX/PWB Source Code Control System (SCCS) and a Load Generation
System (LGS). These tools require the introduction of several
additional information interfaces into the GTD-5 software
development environment.

One class of information interfaces needed by SMSS controls
and records access to other information interfaces in the %
environment. Access control records are internal information
interfaces that describe the access privileges that various users
of the environment have with respect to various other information
interfaces (such as source code for specific system modules). A -.
transaction log is another internal information interface in SMSS,
used to record all uses and/or modifications of other information
interfaces (such as source code modules).

Another class of information interfaces needed by SMSS
represents changes made to other information interfaces. For
example, when the source code for some module is modified, SMSS
stores a record of the modifications (called a delta) that were
made along with the original version of the source code module.
Keeping this historical trace rather than updated versions of the
module permits SMSS to reproduce any version of the module that
might be requested without the necessity of storing multiple
complete copies of that module.

The LGS mainly depends upon previously mentioned information
interfaces, such as source code modules and deltas. It produces
various other information interfaces, including listings and error
reports, object modules, and load modules.

A reference for SMSS is:

Chauza, Edward J. and Fortune. Larry E., "GTD-5 EAX Software
Management Support System", GTE Automatic Electric Journal,
May-June 1981, pp. 90-96.

8.2 Literature

The root information fragments of configuration management
include documents and programs (modules, subsystems, systems),
each associated with baselines, revisions and versions.
Configuration management also deals with problem reports, change
authorizations and correction reports.

The non-root information fragments of configuration
management are the components of each of these. Documents may be
made up of words, lines, paragraphs or chapters. depending upon
the Aature of the system used to support changes to them.
Programs are frequently changed by updating lines. Change control
documents are usually made up of fields of information.

There are a number of companies that have developed automated
systems for configuration management, but most of these systems
are considered proprietary. Consequently, there is no published
literature available about them.

Bersoff, E. H., "Elements of Software Configuration
Management", IEEE Trans. Software Eng., V. SE-10, No.1, Jan.
1984, pp. 79-87.

Bersoff, Edward H., Henderson, Vilas D., and Siegel, Stanley
G., Software Configuration Management, an Investment in
Product Integrity, Prentice-Hall, 1980.

Bond, M.; Bott, M. F.; Tedd, M. D., "Saviour-A Tool for
Software Configuration Management", IUCC Bull., Spring, 1983.
pp. 27-29.

Clemons, E. K.; Scallan, P. G.; Sibley, E. H., "The Software
Configuration Management Database", AFIPS Conference
Proceedings, V. 50, 1981 National Computer Conference. 4-7
May 1981.

Diakite, L., "The ISEF Software Configuration Management
System", Software Engineering, Proceedings of ESA/ESTEC
Seminar, Noordwijk, Netherlands. 11-14 Oct. 1983. pp. 19-23.

Foulkes, R.; Mills, M. P., "Software Configuration Management
and Its Contribution to Reliability Program Management", IEEE
Trans. Reliab., V. R-32. No: 3, Aug. 1983, pp. 289-292.

Hawley, P. J., "DACOM: A Design and Configuration Management
System". IEEE Proceedings COMPSAC 83: The IEEE Computer
Society's Seventh International Computer Software and

.0

.P % -A 'a

Applications Conference, Chicago, IL, 7-11 Nov. 1983, pp.
580-587.

Johnson, D.; Kolberg, C.; Sinnamon, J.. "A Programmable
System for Software Configuration Management", Proceedings of
COMPSAC 78 Computer Software and Applications Conference.
Chicago, IL, 13-16 Nov. 1978, pp. 402-407.

Rasmussen, N. L., "Software Configuration Management Using
Operation System Primitives of the National Software Works".
15th IEEE Computer Society International Conference,
Washington, DC, 6-9 Sept. 1977.

Rochkind, Marc J., "Source Code Control System", IEEE Trans.
on Software Engineering, V. SE-1, No. 4, December 1975, pp.
364-370.

Tichy, W. F., "Software Development Control Based on Module
Interconnection", Proceedings of the 4th International
Conference on Software Engineering, Munich. Germany. 17-19
Sept. 1979.

Wade, G. 0., "AFLC Software Configuration Management",
Proceedings of the IEEE 1983 National Aerospace and
Electronics Conference, Dayton, OH, 17-19 May 1983.

Young, B. R., "Software Configuration Management", Software
Engineering. Proceedings of ESA/ESTEC Seminar, Noordwijk,
Netherlands, 11-14 Oct. 1983.

Zucker, Sandra, "Automating the Configuration Management
Process", Proc. A Conference on Software Development Tools,
Techniques, and Alternatives, July 25-28, 1983, Arlington,
Va., IEEE Computer Society Press.

9.0 Verification and Validation

Verification and validation relate to assuring that a product
conforms to requirements and user needs. When the product is a
textual document, this assurance is usually in the form of a
review by people who are in a position to judge the conformance of
the product. The root information fragment resulting from such a
review is typically a review report. The non-root fragments
related to reviews are review issues (problems) and associated
attributes, along with other information about the review
process. When the product being verified or validated is
executable, the information interfaces involved are those of
testing, described above. See also quality assurance.

Campanizzi, J. A., "Structured Software Testing", Qual.
Proj-., V. 17, No. 5, 14-15 May 1984.

Casey, D.: Erickson. R. W., "Practical Tools for Software
IN,

IV, -, a- %R nn bm pixy p I a

Test Certification". Digest of Papers COMPCON Spring '84.
Twenty-eighth IEEE Computer Society International Conference
San Francisco, CA, 27 Feb - 1 March 1984, pp. 87-90.

Conway. M.; Molari, R., Guidelines for Testing and Release
Procedures, Informatics General Corp., Palo Alto, CA, 15 Jan.
1984.

Dairymple, James Capt.; Forest, Steve 1LT; Forshee, Michael
Capt.; Fox-Daeke, Teresa Capt.; Ingram, Guy 2LT; Papa, Dan
Capt, Handbook for Evaluation and Life Cycle Planning for
Software, V.4 - Test and Independent Verification and
Validation, Electronic Systems Division, Air Force Systems
Command, Hanscom APB, MA, Feb. 1983.

Deutsch, M. S., Software Verification and Validation.
Realistic Project Approaches, Prentice-Hall. NJ, 1982.

Evans, Michael W., Productive Software Test Management.
Wiley-Interscience, 1984.

Generic Independent Verification and Validation (IV V V)
Capability for OC-ALC/MME, Pram Program Office, ASD/RA,
Wright-Patterson AFB, OH, Mar. 1984.

Koch, H. S.; Kubat, P., "Managing Test-Procedures to Achieve
Reliable Software", IEEE Trans. Reliab.. V. R-32, No. 3. Aug.
1983, pp. 299-303.

Kosovac, S. M.; Shortle, G. E. Jr., "Ballistic Missile
Defense Simulation Validation", Proceedings of the 1976
Summer Computer Simulation Conference, Washington, DC, 12-14
July 1976, pp. 693-698.

Lehman, M.M., "The Environment of Program Development and
Maintenance Programs, Programming and Programming Support",
Proc., 1981 International Computing Symposium, IPC Business
Press, Ltd., pp. 1-12.

Longoni, F.; Redaelli, R. "On-Board Software Testing and
Qualification", Software Engineering. Proceedings of
ESA/ESTEC Seminar, Noordwijk, Netherlands, 11-14 Oct 1983,
pp. 201-206.

Pelissero, R., "Tornado Flight Control Software Validation:
Methodology and Tools", Agard Conference Proceedings, NO.
330, Software for Avionics, The Hague-Kijkduin. Netherlands,
6-10 Sept. 1982, pp. 1-13.

Planning for Software Validation. Verification and Testing,
National Bureau of Standards, Nov. 1982.

Reifer, D. J., Software Verification and Validation, AGARD,
Rept. No. AGARD-AG-258, May 1980.

'a

o,

~P J~~~ ~ ~ .W FN.- N ~ U' - -v , ti ?v 1. - W. ,- - V- I- ri -_ -- 1 b- V. VX

Taylor, R. N., "An Integrated Verification and Testing
Environment", Softvare-Pract. and Exper., V. 13. No. 8.
August 1983, pp. 697-713.

Wilson, P. B., "Building Quality into Software with More
Effective Testing", Small Syst. World, V. 11. No. 8, Aug.
1983, pp. 42-44.

Young. N. J. B., "Automating the Testing of Software
(Aerospace)", Agard Conference Proceedings No. 343. Advanced
Concepts for Avionics/Weapon System Design, Development and
Integration. 18-22 April 1983, pp. 1-13.

10.0 Quality Assurance

The term 'quality assurance' is used to mean different things
by different people. To some, quality assurance is synonymouswith validation and verification. To others, it encompasses both

validation and verification and configuration management. To
others, quality assurance is part of configuration management. To
others, quality assurance is the process of assuring that all
activities are carried out according to prescribed standards.

The information interfaces of quality assurance are,
therefore, the interfaces of configuration management, validation
and verification (which, in turn, are the information interfaces
of reviewing and testing), and process measurement and
evaluation. The reader should see all of these areas. The
documents listed here are those that view the topic from the
notion that quality assurance is a superset of configuration
management and validation and verification.

Bergmann, S.; Gagne, P.; Paige, M., "Software QA: An
Integrated Approach". Kirk, D. E. (Editor), IEEE Sixteenth
ASILOMAR Conference on Circuits, Systems and Computers,
Pacific Grove. CA, 8-10 Nov. 1982.

Buckley, F. J.; Poston, R, "Software Quality Assurance", IEEE
Trans. Software Eng., V. SE-10, No. 1, Jan. 1984, pp. 36-41.

Butler, L. P., "Software Quality Assurance Cyclomatic
Complexity of a Computer Program", IEEE Proceedings of the
IEEE 1983 National Aerospace and Electronics Conference,
NAECON 1983, V. 2, 17-19 May 1983. pp. 867-73.

Carpenter, C. L. Jr.; Murine, G. E., "Measuring Software
Product Quality", Qual. Prog., V. 17, No. 5, 16-20 May 1984.

Carpenter, L.C., and Tripp, L.L., "Software Design Validation
Tool," Proceedings of the 1975 International Confrence on
Reliable Software, IEEE Computer Society, 1975. pp. 395-400.

0

Catiglione, P. V.; Thompson, W. W., *Implementation and
Measurable Output of Software Quality Assurance", 1983
Proceedings Annual Reliability and Maintainability Symposium,
Orlando, FL, 25-27 Jan. 1983, pp. 107-112.

Crawford, S. G.; Hiering, V. S., "Software Quality Control
and Assurance", IEEE International Conference on
Communications, 1983, pp. 713-717.

Greenberg, S. G., "A Systems Approach to Software Quality
Assurance", Second Annual Phoenix Conference on Computers and
Communications. 1983 Proceedings, Phoenix, AZ, 14-16 March
1983, pp. 180-184.

Kitchenham, B. A., "Program History Records: A System of
Software Data Collection and Analysis", ICL Tech J., vol. 4.
no. 1. 1 May 1984, pp. 103-114.

McCall, Jim A.; Richards, Paul K.; Walters, Gene F., Factors
in Software Quality, Volume I. Concepts and Definitions of
Software Quality, General Electric Co., Sunnyvale, CA, Report
No. RADC-TR-77-369-VOL-1, Nov. 1977.

McCall, Jim A.; Richards, Paul K.; Walters, Gene F, Factors
in Software Quality. Volume III. Metric Data Collection and
Validation, General Electric Co., Sunnyvale, CA, Report No.
RADC-TR-77-369-VOL-2, Nov. 1977.

Murine, G. E., "The Application of Software Quality Metrics",
IEEE Second Annual Phoenix Conference on Computers and
Communications, 1983 Conference Proceedings, Phoenix, AZ,
14-16 March 1983, pp. 185-188.

O'Connell, G. S., "Software Quality Assurance, A General
Approach", Second Software Engineering Standards Application
Workshop, San Francisco, CA, 17-19 May 1983, pp. 96-102.

Perry, William E., Effective Methods of EDP Quality
Assurance, Prentice-Hall, 1983.

Pingel, T. C., "Assuring Quality in a Telecommunications
Software Development Project". IEEE International Conference
on Communications: Integrating Communication for World
Progress (ICC '83, V. 2. Boston, MA, 19-22 June 1983. pp.
718-721.

Proceedings of the Workshop on Product Assurance Techniques
for Embedded Computer Systems Held at White Oak, Silver
Spring, MD. Naval Surface Weapons Center White Oak, Silver
Spring, MD. 11-12 Jan. 1984.

Pyper, W. R., "Historical Files for Software Quality
Assurance". NBS Proceedings of the Computer Performance
Evaluation Users Group (CPEUG) 17th Annual Meeting

p

(NBS-SP-500-83) San Antonio, TX, 16-19 Nov. 1981. pp.
101-106.

Thomas, E. F., "Pitfalls of Software Quality Assurance
Management", 1983 Proceedings Annual Reliability and
Maintainability Symposium, Orlando. FL, 25-27 Jan. 1983. pp.
101-106.

Tice, G. D. Jr., "SQA Contributions to a Quality Software
Product, 1984 Proceedings of the Annual Reliability and
Maintainability Symposium, San Francisco, CA, 24-26 Jan.
1984, pp. 537-539.

11.0 Systems (Environment) Management

Our interest in systems, or operations, management is related
to the operation of the JSSEE itself. In particular, with respect
to this study we are interested in those information interfaces
created by the need to manage the use of a JSSEE in an operational
setting. Typical needs include system performance evaluation and
usage accounting. The following references pertain to performance
evaluation.

Ferrari, Domenico, ed., Performance of Computer
Installations, Elsevier/North-Holland, 1978.

Ferrari, Domenico, Computer Systems Performance Evaluation,
Prentice-Hall, 1978.

Literature sources related to other areas of operations
management needs and information interfaces were not readily
available during the limited time frame of this study.
Consequently, this paragraph is intended to serve as a reminder
that this subject needs further examination to identify what ways
a SEE should provide data to support system management. The
following is one possible example.

Frobose, R. H.; Wilgus, C. A., "On-Line Entry and Analysis of
Computer Center Operations Logs", Aesop Operations Managers'
Conference, Las Vegas, NV, 4 May 1983, Report No.:
UCRL-88736; CONF-830536-1.

12.0 Training

The Operational Concept Definition for the JSSEE identifies
several ways the JSSEE will support training activities,
including:

Software development and maintenance (adapting the MCCR
and its documentation, building special training
systems, etc.)

M

'p

; e%% ' ',. i .' '.;-2-.v . •v " ' " " "z"."'.'"."" "--' e '. .- _.. - :e - - ' '9

Preparing instructional materials (computer-assisted and
other)

Managing the instructional process (scheduling classes,
tracking performance, etc.)

Scenario development and data reduction

For the purposes of this report, we view the software
development and maintenance needs of training as extensions of the
development and maintenance needs of MCCR software. The other
areas of training support create special needs because they are
applications which run on the JSSEE itself. The information
interfaces created by CAI systems, classroom management systems
and scenario and data handling systems are legitimate concerns for
the JSSEE developers. We have not had sufficient time to explore
these areas in much depth. The following references can serve as
a start.

Crider, Janet and Wagner, Carmen, CAI Guide to Courseware
Languages, Dilithium Press, 1985.

Kearsley, Greg, Computer-based Training: A Guide to
Selection and Implementation, Addison-Wesley, 1983.

Schwartz, J., "Languages and Systems for Computer-Aided
Instruction", Machine-Mediated Learning, Vol. 1, No. 1, 1983,
pp. 5-39.

13.0 Office Automation and Word Processing

Software engineering environments are considered special
purpose office automation systems, where text handling (including
mixed text and graphics), documentation and office management are
important concerns. Consequently, the office automation community
has much to say that is of interest to the designers of the JSSEE.

Ahlsen, Matts; Bjornerstedt, Anders; Britts, Stefan: Hulten,
Christen; Soderlund, Lars; "An Architecture for Object
Management in OIS", ACM Trans. on Office Information Systems.
V. 2., No. 3, July 1984, pp. 173-196.

Gilder, Jules H., The Integrated Software Book.
Addison-Wesley, 1985.

Lynback, Peter; McLeod, Dennis; "Object Management in
Distributed Information Systems". ACM Trans. on Office
Information Systems, V. 2. No. 2, April 1984. pp. 96-122.

Yao, S. Bing; Henner, Alan R.; Shi, Zhougzhi; Tuo, Dawei;
"FORMANAGER: An Office Forms Management System", ACM Trans.
on Office Information Systems, V.2. No. 3, July 1984, pp.
235-262.

14.0 Networking and Distributed Processing

A software engineering environment may be a distributed
system. In such a case. the fields of networking and distributed
processing may be fruitful areas to search for information
interfaces that need to be considered in the design of the JSSEE.
These fields are also likely application areas for systems built
using the JSSEE, and therefore, should be examined at least from
that perspective. Both viewpoints are represented in this
section; there is no separate description of these areas under
Applications. 5-

Berg. Helmut K.; Paulsen, William R.; Wood, William T.; Yu,
Stone H. "Concurrent System Description Language", (Final
Technical Rept. 11 Sept. 80-11 Sept. 81) Corporate Sciences
Center, Report No. RADC-TR-82-3, February 1982.

Brinch-Hanson, P., Architecture of Concurrent Programs.
Prentice-Hall, 1977.

Cotronis, J. Y.; Lauer, P. E., Shields, M. W., "Formal
Behavioural Specification of Concurrent Systems without
Globality Assumptions", Computing Lab. Corp.. Report No.
UNT/CL/TRS-162, 1981.

Martin, James, Design and Strategy for Distributed Data
Processing, Prentice-Hall, 1981.

Muntz.C., Marcus. M., Sattley. K., and Shipman, B., NSW
(National Software Works) Lessons Learned, RADC-TR-84-90,
Massachusetts Computer Associates, Wakefield, MA., May 1984.

42 Tanenbaum, Andrew S., Computer Networks: Toward Distributed
Processing Systems, Prentice-Hall, 1981.

Vernon, Mary Katherine, Performance-Oriented Design of
Distributed Systems, UCLA Computer Science Dept., 1982.

Weber, Herbert, "The Distributed Development System - A
Monolithic Software Development Environment", Software
Engineering Notes. v. 9, No. 5, Oct. 1984, ACM SIGSOFT.

Wileden, Jack C., "Dream -- An Approach to Designing Large
Scale. Concurrent Software Systems", Proc Annu Conf ACM,
Detroit, MI, Oct. 29-31, 1979, Publ. by ACM, Baltimore, MD
1979, pp. 88-94.

15.0 Graphics

Our interest in graphics here is related to the need for the
JSSEE to support graphic representations of program and data

S.

~ &.fa~h~ -"-

structures.

Belady, L.A., Evangelisti, C.J., and Power, L.R.,
"GREENPRINT: A Graphic Representation of Structured
Programs," IBM Systems Journal, Vol. 19, No. 4, 1980, pp.
542-53.

Hebalkar, P.G. and Zilles, S.N., TELL: A System for
Graphically Representing Software Design, IBM Corp., Research
Report RJ2351, September 1978.

Panasuk, Curtis, "Software Standards will Usher in the Age of
Graphics", Electronic Design, July 12, 1984.

Vein, Marceli (ed.), "Proceedings - Graphics Interface '83,
1983", National Research Council of Canada, Ottawa, Ont.
Can., Proc Graphics Interface '83, Edmonton, Alberta, Can.

16.0 Future Paradigms

The list of subjects that can be thought of as future
paradigms that might become a part of the JSSEE someday is open
ended. In fact, the JSSEE is defined as a mid-range system not
necessarily encompassing any of the topics covered in the
references below, but needing to accommodate the evolution into
whatever directions turn out to be particularly useful at a later
date. As such, the JSSEE does not have to accommodate any
information interfaces related to these future paradigms now. It
just has to be able to expand later. The references listed here
can provide insight into some of the directions this might take.

16.1 Artificial Intelligence and Logic Programming

Artemsevh, I.L.; Gorbachev, S.B.; Kleshchev, A.S.; Lifshits,
A. Ya; Orluv, S.I.; Orluva, L.D.; Ovhrovh, T.G.; "Compiler
Generator for Knowledge Representation Languages",
Programmirovanie (USSR). v. 9, no. 4, July-Aug. 1983, pp.
78-89.

Ballard, B.W.; Lusth, J.C.; Tinkham, N.L., "LDC-1: A
Transportable, Knowledge-Based Natural Language Processor for
Office Environments", ACM Trans. Off. Inf. Syst., v. 2, No.
1, Jan. 1984, pp. 1-25.

Balzer, Robert; Cheatham, Thomas E. Jr; Green, Cordell;
"Software Technology in the 1990's: Using a New Paradigm",
Computer, v. 16, No. 11, Nov. 1983, IEEE Computer Society.

Barr, Avron, and Feigenbaum, Edward A., The Handbook of
Artificial Intelligence, William Kaufmann Inc., 1981.

Billion, J.P., Comparison of Languages for Artificial
Intelligence, Productivity and Data Profession: Two

!1

Essentials for a Dynamic Company. Proceedings of the Spring
Convention, v.1, 30 May - 3 June 1983, Paris, France, pp.
250-254.

Clocksin, W.F., Mellish, C.S., Programming in PROLOG.
Springer-Verlag, 1981.

Dean, J.S.; McCone B.P., "Trends for Advanced Software
Tools", EASCON '83: 16th Annual IEEE Electronics and
Aerospace Systems Conference and Exposition, Washington, DC,
19-21 Sept. 1983, pp. 291-298.

Dean, J.S.; McCone, B.P.; Shapiro, D.G., "A Knowledge Base
for Supporting An Intelligent Program Editor", Proceedings of
the 7th International Conference on Software Engineering,
Orlando, FL, 26-29 March 1984.

Fidge, C.J.; Cain, G.J; Jackson, L.N.; Fascoe, R.S.V.,
"Overview of the Melba Automatic Code Generation Project".
ATR Aust Telecommun. Res., Vol. 18, No. 1, 1984, pp. 3-12.

Greenspan, Sol J., "Requirements Modeling: A Knowledge
Representation Approach to Software Definition", CSRG
Technical Report No. 155, Univ. of Toronto, Computer Systems
Research Group, n.d.

Kitagawa, I.; Mizogu-hi, F., "A Software Environment for
Developing Knowledge 3ase Systems", Computer Science and
Technologies 1982, 1982, pp. 334-339.

Merry, M., "Apex 3: An Expert System Shell for Fault
Diagnosis", GEC J. Res. Incorp. Rootni Rev. (GB), v. 1, No.
1, 1983, pp. 39-47.

0awlings, T.L., "A Discussion of Knowledge Representation
Within the Darts Technology", IEEE Conference Record of the
17th ASILOMAR Conference on Circuits, Systems and Computers,
Pacific Grove, CA, 31 Oct. - 2 Nov. 1983. pp. 1-3.

Rich, C.; Waters, R., "Computer Aided Evolutionary Design for
Software Engineering". Sigart Newsl., No. 76, April 1981, pp.
14-15.

Rich, Elaine, "Recent Applications of Artificial Intelligence
in Programming and Problem Solving", Computer Magazine, v.
17, No. 5. May 1984, pp. 4-12.

Steele, Guy L., COMMON LISP: The Language, Digital Press,
1984.

Waters, Richard C., "The Programmers Apprentice: Knowledge
Based Program Editing", IEEE Trans. on Software Engineering,
V. SE-8,No. 1, January 1982. pp. 1-12.

16.2 Application Generators

Horowitz, Ellis; Kemper, Alfous; Narasimhan. Balagi; "A
Survey of Application Generators", IEEE Software, v. 2, No.
1, January 1985, pp. 40-54.

Martin, James, Application Development Without Programmers,
Prentice-Hall, 1982.

Waldrop, J.H., Application Generators: A Case Study, AFIPS
Press.

16.3 Functional Programming

Backus, John, "Can Programming be liberated from the von
Newmann Style? A Functional Style and Its Algebra of
Programs", Comm. ACM, v. 21, No. 8, Aug. 1978.

Zave, Pamela, "An Operational Approach to Requirements
Specification for Embedded Systems". IEEE Trans. on Software
Engineering, Vol. SE-8, No. 3, May 1982, pp. 250-269.

16.4 Relational Programming

Best, E., Relational Semantics of Concurrent Programs (with
Some Applications), (Technical Rept. Series), Newcastle Upon
Tyne Univ. (England) Computing Lab., Report No.
NTU/CL/TRS-180, 1982.

MacLennan, Bruce J., A Relational Program for a Syntax
Directed Editor (Technical Report), Naval Postgraduate
School, Monterey, CA, Report No. NPS52-82-006, Apr. 1982.

MacLennan, Bruce J., Introduction to Relational Programming,
(Technical Report), Naval Postgraduate School, Monterey, CA,
Report No. NPS52-81-008, June 1981.

16.5 Rapid Prototyping

Rapid prototyping literature can also be found under the
headings related to the specific approaches used to build
prototypes. Prototyping through reuse of existing code is covered
in Section 3.2 above related to design. Rapid prototyping through
the use of application generators is covered in Section 16.3
above. The "Special Issue on Rapid Prototyping", below, contains
30 working papers on the subject from a variety of approaches.

The Development of a Programming Support System for Rapid
Prototyping, Software Options, Inc., Report No. SO-01-83,
1983

Konchan.Thomas, and Klausner, Aviel, Rapid Prototyping and
Requirements Specification Using PDS, TR-02-83, Harvard
University, Center for Research in Computing Technology. n.d.

"Special Issue on Rapid Prototyping", Software Engineering
Notes, Vol. 7, No. 5, December 1982.

Zelkowitz, Marvin V., "A Case Study in Rapid Prototyping",
Software Practice and Experience, Vol 10, 1980, pp.
1037-1042.

16.6 Data Flow Computing

Ackerman, W.B., and Dennis, J.B., "VAL - A Value Oriented
Algorithmic Language", Laboratory for Computer Science, MIT,
Preliminary Reference Manual, June 1979.

Arvind, Gostelow, K.P., and Plouffe, W.E., "An Asychronous
Programming Language and Computing Machine", Department of
Information and Computer Science, U. of California Irvine, TR
114A, September 1978.

McGraw, J., "Data Flow Computing: Software Development",
IEEE Trans. on Computing, Vol. 29, No. 12, December 1980, pp.
1095-1103.

17.0 Languages and Syntax-Directed Processing

The subject of languages and language processing suggest a
number of information interfaces that are relevant to the JSSEE.
Most of these information interfaces are internal, not usually
seen directly by the environment user, although in syntax-directed
editors they are frequently represented by the entities that the
user manipulates.

The following document discusses the impact of language
technology on software engineering.

Davies, A.C., Programming Language Features Which Support
Software Engineering Design Methods, Centre of Information
Engng., City Univ. of London, London, England, DePledge, P.
(Editor), Software Engineering for Non-rootprocessor Systems,
Publ. Peter Peregrinus, London, England 1984.

The following documents discuss information interfaces
related to syntax-directed editing.

Barrow. A; GraceE.. "Slash Software Development - A Case for
Incremental Design". Proceedings of the IEEE 1983 National
Aerospace and Electronics Conference, NAECON. 17-19 May 1983.
pp. 973-978.

Barstow, David R.; Shrobe, Howard E.; Sandewall, Erik,
Interactive Programming Environments, McGraw-Hill, 1984.

Medina-Mora, Raul. Syntax-Directed Editing: Towards

1
--. - -.. - -$? - -- -. L...h~ . /i .° .. v.- . ,

..,..'

Integrated Programming Environments, Ph.D. Dissertation.
Carnegie-Mellon University, March 1982.

Reps, Thomas W., Generating Language-Based Environments, MIT
Press, 1984.

Hardware description languages may be included in the JSSEE
as part of the need to support the systems engineering activity.
In any case. they represent a class of languages that have some
interesting capabilities, particularly in the area of graphics,
that may be of interest to the JSSEE. The following references
reflaezt some recent developments in this field.

Computer, Vol. 18, No. 2, February 1985. Special issue on
hardware description languages; contains eight articles on
the subject.

Lieberherr, Karl J., "Toward a Standard Hardware Description
Language", IEEE Design and Test of Computers. Vol. 2, No. 1,
February 1985.

18.0 Applications

It seems that there has been at least one methodology or
language developed for just about every class of applications for
which computers are used. Each of these presents a specific list
of information interfaces appropriate to an environment being used
for all applications viewed as mission critical, which encompasses
a very broad range of applications. It is appropriate, therefore,
to consider the implications of these applications in discussing
the information interface requirements of JSSEE. In this section
we provide a small sampling of literature which is of an
application specific nature, more as a prod to the imagination
than as a thorough covering of the subject.

The application specific area consists of topics with
computer science names, such as distributed database management
systems, and end user applications, such as avionics.

% %

18.1 Database Management Systems

This subject is being covered in greater detail in a separate
study.

Batory, D.S.; Model of Transaction on Physical Databases,
Report No.: DOE/ER/10977-T1, Dept. of Energy, 1982.

Bachman, C.W., "Data Structure Diagrams", Data Base, The
Quarterly Newsletter of the Special Interest Group on
Business Data Processing of the ACM, Vol 1, No. 2, pp. 4-10.

Chen, P., The Entity-Relationship to Logical Data Base
Design, The Q.E.D. Monograph Series on Data Base Management,
No. 6 (Wellesley, Mass.: Q.E.D. Information Sciences. Inc.),
1977.

Haseman, W.D.; Whinston, A.B., "Automatic Application Program
Interface to a Data Base", Comput J., Vol. 20, No. 3, August
1977, pp. 222-226.

Jardine, D.A.; Davis, B.J., "A Data-Base Application Design

Language", Inf. and Manage., Vol. 4, No. 2, May 1981, pp.
81-93.

Knoll, Matthew; Hargrave, W. Terry; Salazar, Sandra, "Data
Model Processing". Proceedings of the National Computer
Conference, Houston, TX, June 7-10, 1982, pp. 571-578.

Lamersdorf, Winfried, Specification and Interpretation of
Data Model Semantics: An Integration of Two Approaches,
Report No.: NBSIR-83-2740, National Bureau of Standards, July
1983.

Martin, J., Principles of Data-Base Management, 2nd Ed.,
Prentice-Hall, 1977.

Martin, J., Strategic Data Planning Methodologies,
Prentice-Hall, 1982.

Nakamura, A., "Three-Valued Logic and Its Application to the
Query Language of Incomplete Information". Proceedings of the
International Symposium on Multiple-Valued Logic (13th), held
at Kyoto. Japan on May 23-25, 1983, pp. 214-218.

Niemi, T.; Jarvelin, K., "A Straightforward Formalization of
the Relational Model", Sigmod Rec.. Vol 14, No. 1, March
1984, pp. 15-38.

Olle, T. William, "The Current Programming Language Standards
Scene IX: Data Base Management Systems", Computer &
Standards, V. 2, No. 2-3, 1983. North-Holland. pp. 119-126.

.~ , A- ~ - - A -- - . -~ - ' ' A.C .

Parsons, R.G.; Dale, A.G.; Yurkanan, C.V., "Data Manipulation
Language Requirements for Database Management Systems",
Comput J., Vol. 17, No. 2, May 2, 1974, pp. 99-103.

Sneeringer, Cheryl, "Lolipop: A Data Manipulation Language
for Data-Independence", Proc. of the Tex. Conf. on Comput.
Syst., 5th, Univ. of Tex, Austin, Oct 18-19, 1976, pp.
140-146.

Ulfsby, Stig; Meen, Steinar; Oian, Jorn, "Tornado: A
Data-Base Management System for Graphics Applications", IEEE
Comput Graphics Appl, Vol. 2, No. 3, May 1982, pp. 71-76,
78-79.

Wah, Benjamin W., "International Conference on Data
Engineering, 1984", IEEE Service Center (Cat. No.
84CH2031-3). "

18.2 Avionics

Carrier, L. M.; Kasai, G. H., "Avionics Software Management
and Control", Proceedings of the IEEE/AIAA 5th Digital
Avionics Systems Conference, Seattle, WA, 31 Oct. - 3 Nov.
1983.

Weiss, David, NATO/AGARD Symposium on Software for
Avionics,

Naval Research Lab., Washington, DC 20390, Agency Report No.: ee
C-7-83, April 1983.

18.3 Decision Support Systems

Jones, P., "Reveal-Addressing the Technologies of DSS and
Expert Systems", IEEE Colloquium on Decision Support Aspects
of Expert Systems (Digest No. 67), 1984.

Orman, L., "An Array Theoretic Specification Environment for
the Design of Desicion Support Systems". Int. J. Policy Anal.
and Inf. Syst., v. 6. No. 4, Dec. 1982.

Wang, M.S.-Y; Yu, K.-C., "A Hierarchical Skeleton of
Knowledge-Based Decision Support System Software",
Proceedings COMPCON 83 Fall: Delivering Computer Power to End
Users, Twenty-Seventh IEEE Computer Society International
Conference, 25029 Sept. 1983, Arlington, VA. October 1983,
pp. 86-92.

S.

18.4 Real-Time Systems

Biewald. J.; Joho. E.; Jovalakic. S.; Shelling. H.,
"Application of the Specification and Design Technique EPOS
to a Process Control Problem". Proc of the IFAC/IFIP Conf.
6th. Duesseldorf. Germany, Oct. 14-17, 1980. Publ forIFAC by
Pergamon Press, Oxford. England and New York. NY 1980. pp.
517-522.

~ ~ *5 N N N N

Glass, Robert, Real-Time Software, Prentice-Hall, 1984.

Gomaa, H., "A Software Design Method for Real-Time Systems",
Comm. ACM, V.27, No. 9, September 1984, pp. 938-949.

Mellichamp, Duncan A., Real Time Computing: With Applications
to Data Acquisition and Control, Van Nostrand Reinhold, 1983.

Weide, Bruce W., et al., "Integration and Design Methodology
Support for Process Control", Computer Magazine, v. 17, No.
2, February 1984, pp. 27-32.

18.5 Human Engineering

Not strictly an application, human engineering is an aspect
of all applications. This topic is being discussed in greater
depth in a seperate study. Of the following references, the first
three provide good overviews of the area; the last three concern
tools and languages.

Curtis, B., Tutorial: Human Factors in Software Development,
IEEE Computer Society Press, Los Alamitos, Calif., 1981.

Shneiderman, B.. Software Psychology: Human Factors in
Computer and Information Systems, Little Brown and Co.,
Boston, Mass., 1980.

Weinberg, G.M., The Psychology of Computer Programming, Van
Nostrand Reinhold, New York, 1971.

Hartson, H.R., and Johnson, D.H., "Dialogue Management: New
Concepts in Human-Computer Interface Development".
Manuscript submitted to ACM Computing Surveys (revised
version), March 1984.

Moran, T.P., "The Command Language Grammar: A Representation
of the User Interface of Interactive Computer Systems".
International Journal of Man-Machine Studies, 1981, Vol. 15,
pp. 3-50.

Reisner, P., "Formal Grammar and Human Factors Design of an
Interactive Graphics System". IEEE Transactions on SoftwareEngineering, Vol. SE-7, 1981, pp. 229-240.

The following reference discusses the human interface in a
number of recent microcomputer products.

Gilder, Jules H., The Integrated Software Book,
Addison-Wesley, 1985.

CZ7
:%-

1.4

18.6 Security

This subject is being covered in greater depth in a separate
study. We list it here as a reminder that security is a concern
of most mission-critical software. The following references may
serve as a starting point for further study. a

Cheheyl, M.H., et al., "Verifying Security", ACM Computing
Surveys, Vol. 13, No. 3, September 1981.

Gerhart, S.L., ed., "AFFIRM User's Guide", USC Information
Sciences Institute, April 1980.

Hartman, Bret A., et al., "Formal Verification in the Trusted
System Evlauation Process", Conference Record of EASCON 82,
Washington, DC, September 1982.

"aLandwehr, C.E., "Formal Models for Computer Security". ACM
Computing Surveys, Vol. 13, No. 3, September 1981.

Levitt, K.N., et al., "The HDM Handbook, Vol. I-III",
Computer Science Laboratory, SRI International, Menlo Park,
CA, June 1979.

Locasso, R., et al., "The Ina Jo Specification Language
Reference Manual", SDC Document TM-(l)-6021/001/00, System
Development Corporation, Santa Monica, CA, June 1980.

Millen, J.K., "Security Kernal Validation in Practice",
Communications of the ACM, Vol. 9, No. 5, May 1976.

19.0 Relationships

The following report is the only one we found that explicitly ..-
discusses the relationships between information interfaces. In
particular, it contains a discussion of producer-consumer
relationships. Some relationships are identified in almost every
reference in this report. Typically these are structural
relationships (such as component-subcomponent) or temporal
(producer-consumer). Most methodologies, of course, describe both -0
time sequences and structures of work products, but they usually
just present these relationships in a prescriptive way, without
analyzing them. Nevertheless, for the purposes of this study.
relationships among information fragments can be found almost
everywhere that the information interfaces, themselves, can be
found.

Santoni, Patricia A., The Project Development Data Base: The
Core of an Automated Software Engineering Environment, Naval
Ocean Systems Center, Technical Note 932, 24 October 1980.

Environment builders are becoming increasingly concerned with

',

'-S

the definition of'a project database as one of the primary focuses P
of the environment. Appendix 1 is taken from such an effort.

There are innumerable relationships specific to individual
tools and information fragments. We can suggest the following to
provide a flavor of what a researcher should be looking for:

The "with" and "uses" relationships in Ada

* Data flow and scope relationships related to programs

* Symbol cross references, including document indexes

S Actual-expected relationship in test results

.41

20.0 Conclusions

The main purpose of this report is to survey existing
information interfaces and information interface technology,
providing references to literature on these topics and offering
representative examples of both information interfaces and
information interface technology. In this section we summarize
that survey by listing what we have described in the report. The
following lists assemble the information interfaces and the
interface technology that we have described in the tools review
sections of this report.

Information Interfaces:

- RSL, the DCDS (SREM) Requirements Statement Language
(section 2.1.1)

- SREM's element-attribute-relation structure [section 2.1.1]

- DCDS tool-interpretation tables [section 2.1.1]

- Arcturus interactive Ada program design language (PDL)
[section 3.1.1]

- Arcturus interactive Ada (section 4.1.1]

- Arcturus internal representation [section 4.1.1]

- compiled version of an (interactive or otherwise) Ada
program (section 4.1.11

- Arcturus performance measurement output (section 4.1.11

- Toolpack program units and program unit groups (PUGs)
[section 4.1.21

- token streams, parse trees, symbol tables and object
modules (section 4.1.2]

4I

- Toolpack test data collections (TDCs) and error reports
[section 4.1.2]

- annotated flow graphs and versions of programs instrumented
to support debugging [section 4.1.23

- Toolpack options packets and procedures [section 4.1.2]

- Diana attributed trees [section 4.1.4]

- EDL debugging viewpoint defi-tions [section 4.1.5]

- CTS problem report and tracking form [section 6.1.1]

- statistical summary of CTS activities [section 6.1.1]

- EPEST cost estimation charts, weekly group progress
reports, milestone charts, and activity schedules [section
7.1.1]

- SMSS access control records [section 8.1.1]

- SMSS transactions log [section 8.1.1]

- SMSS source code modification records (deltas) [section
8.1.1]

- listings, error reports and load modules (section 8.1.11

Information Interface Technology:

- Odin (section 4.1.3]

- Interface Definition Language [section 4.1.4]

- PIC internal representation definition tools [section
3.1.2]

- Standard language definition methods (e.g., BNF) [found in
various tool specifications, e.g., Arcturus PDL definition]

- Data dictionaries

The main conclusion to be drawn from the preceding lists is
that there are a vast array of information interfaces that must be
considered in de3igning a software development environment and
relatively little information interface technology to help in the
task of designing, creating and controlling those information
interfaces.

Another conclusion that falls out from the enormous breadth
of the subject is that there is still a lot of work remaining (as

!~

described in Section 21 below). In order to actually develop
information interface specifications, some number of existing
information interfaces should be disected in detail.

Given the limited time available, this compendium is
necessarily incomplete. Nevertheless, as the lists above suggest,
it has succeeded in graphically demonstrating the scope of the
information interfaces issue relative to the creation of a JSSEE.
It has also indicated the paucity of information interface
technology available for coping with this issue. Although vastly
more citations could have been accumulated, we believe that those
contained in this compendium are reasonably representative of the
topic area. Moreover, we feel that this compendium should provide
an excellent starting point for any subsequent efforts addressing
the information interfaces issue with respect to JSSEE.

21.0 Recommendations

It should be clear that an effort of this type could go on
almost indefinitely. While we do not recommend that, we do
believe that some additional work is needed. Specifically, a
closer look at each of the areas should be made in an effort to
distinguish between the important (for the JSSEE) and the less
important references, and to develop a list of the basic concepts
of each area. The objective here would be to further bound the
problems that will need to be examined to select specific
information interfaces for the JSSEE in a later task. We are not
ready to do the selecting yet, but we are ready to start narrowing
the field of potential interfaces that the JSSEE should support.

Several other steps need to be completed before a list of

information interfaces can be prescribed for the JSSEE:

o All relevant standards need to be detailed.

o A framework for organizing information interfaces must be
developed and a more formal taxonomy of information interface
related concepts needs to be defined.

o The basic notion that a single environment can support
multiple methods and approaches to development in a
consistent way needs to be established.

o The initial list of methods, languages, tools and
notations that the JSSEE will support should be defined.

o A greater analysis of the Services-related environments
(AIE, ALS, ALSiN. FASP and DCDS), as well as the most common
commercial environments in use by DoD contractors, should be
conducted with an eye toward identifying those information
interfaces that will be necessary to include in the JSSEE in
order to support a smooth transition from Servioe-specific 0
and organization-specific environments to a Joint Services

'J..

environment.

Finally, a technology should be adopted f or specifying
information interfaces, e.g. a formal specification language. A
decision needs to be made as to whether a standard for an
information interface specification language should be adopted.
It may be appropriate to develop or select tools to aid in
developing, adopting, disseminating and enforcing information
interface specifications.

Current JSSEE plans call for most of these steps to be
taken. The effort leading to this report has reemphasized the
large breadth of information interface concerns and potential 1
contents. Substantial work remains before the actual detailed
effort to specify interfaces can begin, and the specification '

effort will clearly be very substantial.

In fact, one final recommendation is for the planning for the
JSSRE to include establishing a mechanism for the adoption of
standard information interfaces after initial development of the
JSSEE. Since an information interface is a shared boundary, the f

need for an interface specification does not really exist until
the entities which form the boundary are to be specified. '

Naturally, many such boundaries can be anticipated; this is the
basis for having a task for defining information interfaces.
However, It is obvious that the complete specification of
information interfaces will not be achieved in one step. The
reco~mmendations above call for the development of the technology
for defining new information interfaces. This recommendation
calls for the planning of the process.

-e*

APFM 1

T*TRI Software Produtivity system

Arm B. Mamnv-Squires

95

The TRW Software Productivity System (SPS) (Boehm, 1982)
(Boehm. 1984) is a software support environment based upon the
UNIX(*) operating system, a variety of TRW software tools and
computer support equipment, and a wideband local network. It is
part of a major TRW internally-funded effort begun in 1981 to
improve productivity of software developers in the 1980s. Two of
the primary components of the software development environment are
relevant to information interfaces: the software tool set and the
master project database. In addition, an internal research and
development project is underway at TRW to define, design and
develop an integrated project master database for SPS.

The goal of the software tool set is to support the entire
software development lifecycle and to be well-engineered as well
as portable across various hardware environments. The tool set is
to provide convenient access to the master project database which
ideally would contain all information relevant to project
activities, including budget, personnel, schedules, management
data, software requirements, design, test procedures and code.
The three categories of software supported by SPS are (1) general
utilities, (2) office automation tools (e.g., word processing,
forms management, electronic mail, calendar management tools) and
(3) software development tools (e.g., automated unit development
folder, requirements traceability tool, Caine-Farber-Gordon PDL,
Ada PDL, FORTRAN 77 analyzer).

In the current SPS master project database, a multi-database
support structure was chosen consisting of:

1. A hierarchial file system for the software information
fragments (plans, specifications, standrds, code, data,
manuals, etc.) -- provided by the UNIX file system.

2. An update-tracking system for representing the
successive updates of each information fragment --
provided by the UNIX Source Code Control System (SCCS).

3. A relational DBMS for representing the relations between
information fragments -- currently provided by the
INGRES relational DBMS.

* UNIX is a trademark of Bell Laboratories.

An advantage of this approach is that each information
fragment is stored only once and updated in only one place. The
relational DBMS handles the fact that some information fragments
are part of several larger ones. For example, the design of a
module can simultaneously be part of the system design
specification as well as part of a software engineer's Unit
Development Folder.

A hligh-level view of the current master project database
structure is shown in Figure 1. On the left are the work products
that are generated by the project such as specifications, code,
manuals, reports and other documentation. On the right are the
various classes of resources required to develop the work products
such as labor dollars, capital, personnel and computer resources.
In the center are the various plans linking the resources to the
creation of the work products. The upper part of the figure shows
the various attributes of the entities, such as architectural
relationships or traceability relationships.

Although the details of this master project database
structure are still in various stages of definition, a working
prototype of the structure has been developed. Some portions have
been worked out in sufficient detail to support the development of
key tools (e.g., the Requirements Traceability Tool and the Unit
Development Folder). Other portions, such as the entities,
attributes and relationships of a hardware-software architecture
are still under research and development.

The current master project database organization has provided
a stable workable base for configuration management. SCCS
controls all the baselined work products (such as source code,
manual pages, user's manuals) through an Electronic Maintenance
Folder (EMF). All software produced is stored in a single UNIX
directory. Each EMF directory is subdivided into separate
subdirectories for source code, documentation, manual pages, test
information, requirements and design. Control procedures
supported by SCCS allow developers and managers access to and
update of a document without affecting the official baselined
copy. There is also the ability to recover earlier versions of a
controlled document.

The definition, design and development of an integrated
project master database for SPS is currently underway as an
internal R&D effort. In 1984, the project identified the
components of a project master database, their characteristics and
the relationships among those components. The components and
relationships are described in the Project Database Model (Penedo,
1984). An important design principle has been the use of a
unified conceptual model for the user's interaction with the
system as an object-oriented approach. Specifically, an
entity-relationship type model is used to represent the data.
(This is currently considered the best available but may not be
sufficient -- an important issue for further research.) The

e- e

Project Database Model consists of 30 objects, approximately 220
attributes and approximately 110 relationships.

Objects are the components of the model which characterize
types of data relevant to a project. The objects are:
accountable task, change item, consumable purchase, contract, data
component, dictionary, document, equipment purchase, external
component, hardware architecture, hardware component, hardware
component description, interface, milestone, operational scenario,
person, problem report, product, product description, requirement,
resource, risk, simulation, software component, software
executable task, software purchase, test case, test procedure,
tool and Work Breakdown Structure element.

Attributes characterize the objects. Each object has a set
of attributes associated with it and each instance of an object
will have different values for those attributes. Relationships
represent relations between objects showing their
interconnectivity. An example of the attributes for the object
accountable task is in Figure 2. The relationships associated
with the object are shown in Figure 3.

In 1985, this R&D project is synthesizing and analyzing the0
methods and procedures associated with the database components as
well as prototyping a subset of the project master database. It
is exploring several of the issues relevant to information
interface technology such as: (1) appropriate data model suitable
for representing the database components, relationships,
mechanisms and views; (2) need for mechanisms for interfacing with0
external databases; (3) need for database extensibility; (4) need
for efficient mechanisms for collection and retention of
historical data.

-4

Z CAE-cCn

w -z

En) P- H.

Z I-

Go~ 1- 0 f2

~4tJI-~ '- ~ o

u~~i~E- E- cc-- 0

I! 0*W cc

0 E- lz

0 6.4 0 E-
x 0E-i -- .9

W3 1. 0E4 z .

W 0* P-4 - (n9i 1-4 U~1.

02-.r& i-4)

>______ccwI w2 ca

0~~~ w z$

00 E I W I E- EZ0t

-44

V I - Vv -61 W I. V* * VV

Figure 2 - Accountable Task Attributes

Name Description

name the title/name of the accountable task.
number the job number which is used for cost purposes.
description any textual data describing the accountable task.
period of performance lrst month/year and total number of months for which this Ac-

countable Task will be performed.
cost estimated and actual cost per month for period of performance

Basis of Estimate description of the basis of cost estimation.
designation type or designation to which the job/task applies, i.e.,

recurng/non-recuring, etc.
type lag to indicate whether a task/job is measurable or a level of

effort.
number of people estimated and actual number of people per labor category per bur-

den pool per month.
internal organization name of internal organization, if responsibility for the task lies

with an internal orlanization, not a person.

Figure 3 Object Accountable Tuk and its Relationships

Resource: identifies costs
usocisated with

Software Component: produces: Products
associated with

- > Accountable
Task

Hardware Component: managed by: Person
associated with

W S Element: consists related data described in:
of Document

Person: working on

Change Item:
causes changes to
change reflected in

Risk: associated with

REFERENCES

Boehm. Barry W. et al, "The TRW Software Productivity System",
Proceedings of the 6th International Conference on Software
Engineering, Tokyo.

Japan, September 1982.

Boehm, Barry W. et al, "A Software Environment for Improving
Productivity", IEEE Computer, June 1984.

Penedo,Maria H. and Stuckle, E.D., Final Report on the Project
Master Database Model, TRW, Redondo Beach, CA, 1984.

Penedo, Maria H. and Stuckle, E.D.,
"PMDB - A Project Master

Database for Software Engineering Environments,"
submitted for

publication to the 8th International Conference on Software
Engineering, London. England, August 1985.

r '
I1P

p.*

'P

6V

63

APIX 2

Scuem Txights an A TaxonmW
for Software Eiglneering Objects

,',o

I, .

Lem G. Stucki

.5

5-

65 ..

5."

This short conoept paper addresses the need for some type of
taxonomy or information model within a software engineering
environment. Such an information model is needed to identify and
classify the different types of "software engineering objects"
that a computer-aided software engineering environment will have
to support. This in turn will help identify some of the high
level requirements for information management.

For example, source code, execution scripts, test data, et.
al. all suggest the need for simple files with configuration
control/configuration management attributes. Other "software
engineering objects", however, suggest the need for very powerful
and efficient database capabilities. Structured specification
concept and system models involving graphics, forms, as yell as
textual related subobjects suggest the need for powerful database
management capabilities in addition to the normal relational
operations (such as indexed or keyed fields and the ability to
manipulate variable length text fields). In addition to the
representational problems - configuration management/change
control, backup, transaction logging, resource estimation and
tracking, et. al. are also important considerations.

My major recommendation is that some extra time be allotted
to allow for the development of a high level information model
which will include as a minimum:

- A list of the most obvious "object types" to be managed by
the system.

- A list of candidate data structures to be considered for
representing the respective types of objects together with
their associated attributes and values.

- A list of views and user perspectives to be supported.

- Proposed techniques for isolating the human interaction
from the computational aspects of each type of tool as
suggested in the companion "Human Engineering" paper should
also be included in the model.

66a

Software Engineering Objects Generic Storage Model

Planning and Estimating
Pert Charts Structured Graphics

*Gantt Charts Structured Graphics
Task Spec Sheets Forms

Documentation
Documentation Plan Structured Document
Formal Specification Structured Document
Formal Design Structured Document

*User's Documentation Structured Document
Test Plan Structured Document
Test Procedures Structured Document
Test Summary Structured Document

Specification and Analysis -

Context Diagrams Structured Graphics
*Data Flow Diagrams Structured Graphics

State Transition Diagrams Structured Graphics
Spec Sheets Forms
Rapid Prototype Systems Interpretive System
Applications Generators Interpretive System

Design
Structure Charts Structured Graphics
Program Design Languages Sequential Units
Nassi Schneiderman Charts Structured Graphics
database Design Models Database Model
Spec Sheets Forms
Database Schemas Database Templates

CPProgramming
Source Code Sequential Units
Object Code Sequential Units
Libraries Sequential Units
Build/Make Files Sequential Units
Command Scripts Sequential Units

*Database Schemas Database Templates
Debugging Scripts Sequential Units
Test Data Sequential Units
Test Scripts Sequential Units
Test Results Sequential Units

Integration and Testing
Controlled Source Code Sequential Units
Controlled Object Code Sequential Units
Controlled Libraries Sequential Units
Controlled Build/Make Files Sequential Units
Controlled Command Scripts Sequential Units
Controlled database Schemas Database Templates
Controlled Test Data Sequential Units
Controlled Test Scripts Sequential Units
Controlled Test Results Sequential Units

Table 1: Software Engineering Objects and Generic Storage Models

07.

Analysis of Table 1 suggests that a data repository for a
software engineering environment should be capable of effectively
manipulating the following generic data types:

Structured Graphics - Where a given "structured graphics
object"is made up of more than just a diagram. In fact, the
concept really implies the existance (or potential existence) of a
set of related diagrams, hierarchical derivations/relationships,
and (object, attribute, value) relations. For example, support
for a Data Flow Diagram "object" would include sufficient
information to fully characterize all of its constituent "parts"
or "subobjeots" together with a mechanism for manipulating all of
their corresponding attributes and values. Connectivity and
decomposition information must also be supported. Using this
generic storage model, a sophisticated editor can be built which
will support real-time decomposition of graphic objects,
rubberbanding of diagram subobjects as they are modified, and the
specification of attribute values by filling in the blanks in
appropriate "forms".

Structured Documentation - Where a given "structured
documentation object" is made up of various "subobjects" such as
sectional headings, chapter headings, subchapter headings, textual
units, illustrations, tables, figures, etc. An editor can then
support and maintain the structure of the document. Libraries of
sample textual units can be developed and used to speed document
preparation and maintenance. A fisheye browser feature can be
included within the editor to provide improved contextual
awareness. (E.g., Headings can be shown while detailed text is not S
for areas out of the center of the screen - giving a "fisheye"
effect.)

Sequential Units - Where "sequential units" can be viewed as '
related sets of sequential information. Typical relationships
include controlled storage and access to source code modules which
make up a total program or subsystem. Another example
relationship is the maintenance of release information by means of
a set of master files and delta files capable of generating
specific versions of "objects".

Database Model, Templates, and Forms - Where a specific set
of database capabilities is provided. The database must be
capable of all the normal relational type database operations. It
should also have a forms mode for entry, query/modification, and
report generation. For efficiency reasons it must support keyed
access to various fields. Transaction logging and backup
capability, security, submodel - record - field locking, and
access rights are some of the other desirable characteristics of
the database. Efficient implimentation of variable length fields
will support the previously mentioned sequential units, structured
documentation, and structured graphics "objects."

Interpretive Systems - Where a collection of "tools" are
included which have the ability of deriving control information

60o

WT

from various design representations (e.g.. State Transition
Diagrams, Ada PDL, etc.) and generating operational skeleton
code. This skeleton code can then be linked together with
semantic specifications from the database for prototyping user
interfaces with little or no real "coding" having been performed.
Tools to synthesize "smart functional stubs" based on their
input/output specs ("package definitions') and additional PDL info
specifying linkages to libraries of existing code modules, models
(or "packages") can also be provided.

Comments on the general architecture for the software
engineering environment:

Conjecture:

Given the an ability to represent the above mentioned
"objects" in an efficient manner, the primary architecture for the
environment is centered around a very powerful editor linked with
the database and capable of manipulating each of the above
"objects." Analysis functions can be developed and stored as
operations which can be applied to the objects stored in the
database. (Basically, the architecture should result in a very "
powerful "visi-like" [what you see is what you get] capability for
manipulating software engineering objects.)

69

LW. L'4-

DISTRIBUTION LIST FOR IDA PAPER P-1821

CoL Joe Greene 10 copies
Director, STARS Joint Program Office
1211 Fern St., C-107
Arlington, VA 22202

Other

Mr. Jack C. Wileden 5 copies
COINS Dept.
Ledery Graduate Research Center
University of Massachusetts
Amherst, MA 01003

Defense Technical Information Center 2 copies
Cameron Station

andria, VA 22314

CSM Review Panel

Dr. Dan Alpert, Director
Center for Advanced Study
Univerity of Illinois
912 W. Illinois Street
Urbana, Illinois 61801

Dr. Barry W. Boehm
TRW Defense Systems Group
MS 2-2304
One Space Park
Redondo Beach, CA 90278

Dr. Ruth Davis
The Pymatuning Group, Inc.
2000 N. 15th Street, Suite 707
Arlington, VA 22201

Dr. Larry E. Druffel
Software Engineering Institute
Shadyside Place
480 South Aiken Av.
Pittsburgh, PA 15231

Dr. C.E. Hutchinson, Dean
Thayer School of Engineering
Darnouth College
Hanover, NH 03755

N'..,-

Sf ~ i

Mr. AJ. Jordano
Manager, Systems & Software
Engineering Headquarters
Federal Systems Division
6600 Rockledge Dr.
Bethesda, MD 20817

Mr. Robert K. Lehto
Mainstay
302 Mill St.
Occoquan, VA 22125

Mr. Oliver Selfridge
45 Percy Road
Lexington, MA 02173

iDA

Gen. W.Y. Smith, HQ
Mr. Seymour Deitchman, HQ
Ms. Karen Webber, HQ
Dr. Jack Kramer, CSED
Dr. John Salasin, CSED
Dr. Robert Winner, CSED
Dr. Richard P. Morton 5 copies

* K ae PI.c, .Tr 2 copies
IDA C&D Vault 3 copies

I

,i

A

I
S.

p

I

* V. V. ~ ~ J p.~. -.
U S. S. S. S. ~ ~ ~*. ~ . ~ * %A\I\~~%~5{%~ :~:z"z-~~

